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Slice Sampling

Metropolis algorithm is sensitive to step size:

Too samll =⇒ slow decorrelation.

Too large =⇒ high rejection rate.

Slice sampling provides an adaptive step size that is automatically adjusted
to match the characteristics of the distribution.
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Slice sampling involves augmenting z with an additional variable u, and
draw samples from the joint (z , u) space.

Goal: Sample uniformaly from

p̂(z , u) =

{
1/Zp if0 ≤ p̂(z)

0 otherwise

The marginal distribution over z is given by∫
p̂(z , u)du =

∫ p̂(z)

0

1

Zp
du =

p̂(z)

Zp
= p(z)

We can sample from p(z) by sampling from p̂(z , u) and ignore u.
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Procedure

Alternatively sample z and u.

Given z , sample u uniformly from the range 0 ≤ u ≤ p̂(z).

Given u, sample z uniformly from the slice {z : p̂(z) > u as

p(z |u) =
p(z , u)

p(u)
=

1/Zp∫
z:p̂(z)>u 1/Zpdu

= U{z : p̂(z) > u}

p̃(z)

z(τ) z

u

(a)

Comment: idea is very similar to rejection sampling, but here a Gibbs
sampling procedure is employed.

Key: How to draw z from the slice?
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Suppose the current value of z is z(τ) and we have obtained a
corresponding sample u. The next value of z is obtained by
considering a region

zmin ≤ z(τ) ≤ zmax

The sampling scheme satisfy the detailed balance.

The region encompass as much of the slice as possible to allow for
large moves in z space, while has as little space as possible outside
the slice.

p̃(z)

z(τ) z

uzmin zmax

(b)

We can adapt the choice of the region.
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Region Adaptation

Starting with a region containing z(τ) having some length w and
testing each of the end points to see if they lie within the slice.

If either one does not, extend the region by an increment of w until
the end point lies outside the slice.

A candidate value z ′ is chose uniformly from the region.

If it lies within the slice, then forms z(τ+1). Otherwise, shrunk the
region such that the region still contains z(τ), and another candidate
is drawn uniformly from the reduced region and so on.

How about multi-mode?
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Comment

Might not be as efficient as a well designed Metropolis scheme and
Gibbs Sampling. But slice sampling methods will often require less
effort to implement and tune.

Can be efficient form some applications as random walk behavior is
supressed.

Can use Gibbs scheme to handle multiple variables.
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Importance Sampling for Model Comparison

pE (z) =
1

ZE
exp(−E (z))

ZE is the partition function.

Usually, ZE is difficult to evaluate directly.

For model comparison, it is actuallly the ratio of the partition
functions for two models.

Yield accurate results if the importance sampling distribution pG is
closed matched to pE .
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Markov chain sampling

Sampling from pG can be complicated.

Alternate approach: Use samples obtained from a Markov chain to
define the importance.

If the transition probability for the Markov chain is given by T (z, z′),
and the sample set is given by z(1), · · · , z(L), then

How to estimate the transition probability?
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Chaining

Introducing a succession of intermediate distributions p2, · · · , pM−1.
Then

ZM

Z1
=

Z2

Z1

Z3

Z2
· · · ZM

ZM−1

in which the intermmediate ratios can be determined using Monte
Carlo methods.

One way to construct a sequence of intermediate systems is to use an
energy function :

Eα(z) = (1− α)E1(z) + αEM(z)

If Monte Carlo methods, then one single Markov chain run is enough.
Run initially for the system p1 and then after some sutiable number of
steps, switch to the next distribution. ???

Must remain close to the equilibrium distribution at each stage.
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