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Introduction

Exact inference is intractable for most probabilistic models of
practical interest.

We’ve already discussed deterministic approximations including
Variational Bayes and Expectation propagation.

Here we consider approximation based on numerical sampling, also
known as Monte Carlo techniques.
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What is Monte Carlo?

Monte Carlo is a small hillside town in Monaco (near Italy) with
casino since 1865 like Las Vegas.

Stainslaw Marcin Ulam (Polish Mathematician) named the statistical
sampling methods in honor of his uncle, who was a gambler and
would borrow money from relatives because he “just had to go to
Monte Carlo” (which is suggested by another mathematician Nicholas
Metropolis).

The magic is running dice.
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Common Questions

Why do we need Monte Carlo techniques?

Isn’t it trivial to sample from a probability?

Are Monte Carlo methods always slow?

What can Monte Carlo methods do for me?
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General Idea of Sampling

Mostly, the posterior distribution is primarily required for prediction.

Fundamental problem: find the expectation of some function f (z)
with respect to a probability p(z).

E [f ] =

∫
f (z)p(z)dz

General idea: obtain a set of samples z(l) drawn independently from
the distribution p(z). So we can estimate the expectation:

f̂ =
1

L

L∑
l=1

f (z(l))

E [f̂ ] = E [f ]

var [f̂ ] =
1

L
E
[
(f − E [f ])2

]
Note that the variance of estimate is independent of the sample
dimensionality. Usually, 20+ independent samples may be sufficient.
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So sampling is trivial?

Expectation might be dominated by regions of small probability.

p(z) f(z)

z

The samples might not be independent, so the effective sample size
might be much smaller than the apparent sample size.

In complicated distributions like p(z) = 1
Zp

p̂(z), the normalization
factor Zp is hard to calculate directly.
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Sampling from Directed Graphical Models

No variables are observed: Sample from the joint distribution using
ancestral sampling.

p(z) =
∏

p(zi |pai )

Make one pass through the set of variables in some order and sample
from the conditional distribution p(zi |pai ).

Some nodes are observed: draw samples from the joint distribution
and throw away samples which are not consistent with observations.
Any serious problem?

The overall probability of accepting a sample from the posterior
decreases rapidly as the number of observed variables increases.
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Sampling from Undirected Graphical Models

For undirected graph,

p(x) =
1

z

∏
C

φC (xC )

where C represents the maximal cliques.

No one-pass sampling strategy that will sample even from the prior
distribution with no observed variables.

More computational expensive techniques must be employed like
Gibbs Sampling (covered later).
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Sampling from marginal distribution

Sample from joint distribution.

Sample from conditional distribution (posterior).

Sample from marginal distribution. If we already have a strategy to
sample from a joint distribution p(u, v), then we can obtain marginal
distribution p(u) simply by ignoring the values of v in each sample.

This strategy is used in some sampling techniques.
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Review of Basic Probability

Probability distribution function (pdf)

Cumulative distribution function (cdf)

11 / 35



Probability under Transformation

If we define a mapping f (x) from the original sample space X to another
sample space Y:

f (x) : X → Y
y = f (x)

What’s p(y) given p(x)?

F (y) = P(Y ≤ y)

= P(f (X ) ≤ y)

=

∫
{x∈X :f (x)≤y}

p(x)dx
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For simplicity, we assume the function f is monotonic.

Monotonic Increasing:

FY(y) =

∫
{x∈X :x≤f −1(y)}

p(x)dx

=

∫ f −1(y)

−∞
p(x)dx

= FX (f −1(y))

Monotonic Decreasing:

FY(y) =

∫
{x∈X :x≥f −1(y)}

p(x)dx

=

∫ +∞

f −1(y)
p(x)dx

= 1− FX (f −1(y))
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pY(y) =
d

dy
FY (y)

=

{
pX (f −1(y)) d

dy f −1(y) if f is increasing

−pX (f −1(y)) d
dy f −1(y) if f is decreasing

= pX (f −1(y))

∣∣∣∣dx

dy

∣∣∣∣
This can be generalized to multiple variables:

yi = fi (x1, x2, · · · , xM), i = 1, 2, · · · ,M.

Then p(y1, y2, · · · , yM) = p(x1, · · · , xM)|J| where J is the Jacobian matrix:

|J| =

∣∣∣∣∣∣∣
∂x1
∂y1

· · · ∂xM
∂y1

· · · · · · · · ·
∂x1
∂yM

· · · ∂xM
∂yM

∣∣∣∣∣∣∣
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Inversion Method

The Inversion Principle

Let F be a cdf on R with inverse F−1 defined by

F−1(z) = inf {x : F (x) = z , 0 ≤ u ≤ 1}

If Z ∼ U(0, 1), then F−1(Z ) has cdf F ; If X has cumulative distribution
function F , then F (X ) is uniformly distributed on [0, 1].

P(F−1(z) ≤ x) = P(inf {y : F (y) = z} ≤ x) = P(z ≤ F (x)) = F (x)

P(F (x) ≤ z) = P(x ≤ F−1(z)) = F (F−1(z)) = z

Essentially, as long as we know the exact F−1, we can generate samples
for the desired distribution.

Draw sample z uniformly from [0,1];

return F−1(z)
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An Example

Suppose y follows an exponential distribution:

p(y) = λexp(−λ), y ≥ 0

So

F (y) =

∫ y

0
p(ŷ)dŷ

=

∫ y

0
λexp(−λŷ)dŷ

= −exp(−λŷ)|y0
= 1− exp(−λy)

F−1(z) = −λ−1ln(1− z)

It follows that y = −λ−1ln(1− z).

1 Draw samples uniformly from (0, 1).

2 Obtain the corresponding sample via the above equation.
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Intuition

p(y)

h(y)

y0

1

h(y) is flat, then corresponding y should have low probability.
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Sample from Gaussian Distribution

1 Use inversion method to draw samples. Unfortunatelly, the inverse
function requires a lot of compuation and sometimes need
approximation.

2 Use central-limit theorem. Draw n samples from U(0, 1), calculate its
average. Approximatelly, it follows a normal distribution.
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Box-Muller method for generating Gaussian samples

Sample from Gaussian Distribution with zero mean and unit variance

Generate pairs of uniformly distributed random numbers
z1, z2 ∈ (−1, 1).

Discard each pair unless z2
1 + z2

2 ≤ 1. Obtain a uniform distribution of
points inside the unit circle with p(z1, z2) = 1

π .

y1 = z1

(
−2 ln r2

r2

) 1
2

y2 = z2

(
−2 ln r2

r2

) 1
2

where r2 = z2
1 + z2

2 . Then, (y1, y2) follows a Gaussian distribution
and unit variance.
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Why it’s Gaussian?

For multiple variables, we need the Jacobian of the change of variables:

p(y1, y2, · · · , yM) = p(z1, · · · , zM)

∣∣∣∣∂(z1, · · · , zM)

∂(y1, · · · , yM)

∣∣∣∣
Thus, we only need to calculate the Jacobian matrix. As

y2
1 + y2

2 = −2 ln(r2) =⇒ z2
1 + z2

2 = exp(−y2
1 + y2

2

2
)

y1

y2
=

z1

z2

Hence (tedious calculation skipped here, left as a homework)

p(y1, y2) = p(z1, z2)

∣∣∣∣∂(z1, z2)

∂(y1, y2)

∣∣∣∣
=

[
1√
2π

exp

(
−y2

1

2

)][
1√
2π

exp

(
−y2

2

2

)]
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Other form of Gaussian Distribution

In previous example, it’s a Gaussian Distribution with zero mean and unit
variance. What if other mean and covariance matrix?

If y ∼ N(0, 1), then σy + µ ∼ N(µ, σ2).

To generate covariance matrix Σ, we can make use of Cholesky
decomposition (Σ = LLT ). Then, if µ+ Ly ∼ N(µ,Σ).

The previous examples show how to generate samples from standard
distributions, but it’s very limited. We encounter usually much more
complicated distributions, especially in Bayesian inference. Need more
elegant techniques.
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Rejection Sampling

Suppose we want to sample from distribution p(z), and

p(z) =
1

Zp
p̂(z)

where p̂(z) can readily be evaluated, but Zp is unknown.
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Rejection Sampling

We need a simpler proposal distribution q(z) such that there exists a
constraint k such that kq(z) ≥ p̂(z) for all z.

Algorithm

1 Draw a sample z0 from q(z).

2 Generate a number u0 from uniform distribution over [0, kq(z0)];

3 If u0 ≥ p̂(z0), the sample is rejected; Otherwise, z0 is accepted.

z0 z

u0

kq(z0) kq(z)

p̃(z)

Note that the sample pair
(z0, u0) has uniform

distribution under the curve
of p̂(z). Hence, the z values
are distributed according to

p(z).
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Disadvantages

Sometimes, it’s not so easy to find a k s.t. kq(z) ≥ p̂(z), ∀z .

The ratio k must be as tight as possible.

p(accept) =

∫
p̂(z)

kq(z)
q(z)dz =

1

k

∫
p̂(z)dz

Larger k usually result in large portion of rejections :(

As long as p̂(z) is under a envelope function kq(z) for all z , this
algorithm works. Is it possible to obtain relatively tight bound for
different intervals of z?
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Is a global k required?

Essentially, we need to generate samples such that
psampling (z) ∝ p̂(z).

So if a global k is used

psampling (z) ∝ q(z)
p̂(z)

k q(z)

We get the required distribution.

However, if we used different k in different intervals, this will result in
some problem.

Goal:sample from a Gaussian distribution p, we use q = p as the
proposal distribution

Idealy, we should use a global k = 1. What if I set k = 2 for z ≤ 0?

All the positive samples will be accepted, but the negative samples
will be accepted with only half chance. This is not our original
Gaussian distribution!!
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Adaptive Rejection Sampling

Difficult to obtain suitable analytic form for the envelope distribution
q(z).
Alternative Approach: Construct the envelope function on the fly.
Particularly straightforward if p(z) is log concave (log p(z) is
concave).

z1 z2 z3 z

ln p(z)
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Construct Envelope On The Fly I

The function ln p(z) and its gradient are evaluated at some initial set
of grid points and the intersection of the resulting tangent lines are
used to construct the envelope function.

Suppose the tangent line between intersection zi−1 and zi is

line(z) = ln E (z) = −λi (z − zi−1) + bi

k q(z) = E (z) = ciexp {−λi (z − zi−1)}

q(z) =
E (z)∫

D E (z)dz
(Normalized envelope function)

The envelope function comprises a piecewise exponential distribution
of the form

q(z) = kiλiexp {−λi (z − zi−1)} zi−1 ≤ z ≤ zi

where ki = ci∫
D E(z)dz

.
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Construct Envelope on The Fly II

A sample value z is drawn from the normalized envelope function
q(z). This could be achieved using inversion method.

Draw a sample u from uniform distribution;

If u < exp(lnp̂(z)− line(z)), accept z ;

Otherwise, the tangent line of the new sample is computed to refine
the envelope function.

The envelope becomes tighter and tighter. Every rejected sample help
refine the envelope function–It’s adaptive!!
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Curse of High Dimensionality for Rejection Sampling

�

�������

−5 0 5
0

0.25

0.5

Sample from a high-dimensional Gaussian distribution

An artificial problem: wish to sample from p(z) = N(0, σ2
pI).

Suppose we have a proposal distribution q(z) = N(0, σ2
qI) such that

σ2
q ≥ σ2

p.

The optimum bound k is obtained when z = 0.

k =
p(z)

q(z)
=
|σ2

pI|−1/2

|σ2
qI|−1/2

=

(
σq

σp

)D
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Rejection is too much!

k =

(
σq

σp

)D

Remember that the acceptance rate is

p(accept) =
1

k

∫
p̂(z)dz =

1

k

Here p̂(z) = p(z).

The acceptance rate diminishes exponentially with dimensionality.

If D = 1000, the acceptance ratio will be about 1/20, 000. Obtain 1
sample from 20,000 samples from q(z).

In practical examples, the desired distribution may be multi-modal or
sharply peaked. It will be extremely difficult to find a good proposal
distribution.

Rejection sampling suffers from high-dimensionality. Usually act as a
subroutine to sample from 1 or 2 dimensions in a more complicated
algorithm.
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(Adaptive) Rejection Sampling might have to reject samples.

A serious problem for high dimensionality.

Is it possible to utilize all the samples?
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In practical cases, we usually only wish to calculate the expectation
(e.g. Bayesian Prediction, E-step in EM algorithm ).

Consider the case where we know p(z) but we can not draw samples
from it directly.

A simple strategy:

E [f ] ≈
L∑

l=1

p(z(l))f (z(l))

The distribution of interest often have much of their mass confined to
relatively small regions of z. Uniform sampling would be very
inefficient: only a very small proportion of the samples will make a
significant contribution.

We really like to choose the sample points to fall in regions where
p(z) is large, or ideally where the product p(z)f (z) is large.
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Importance Sampling

Take a proposal distribution q(z):

E [f ] =

∫
f (z)p(z)dz

=

∫
f (z)

p(z)

q(z)
q(z)dz

≈ 1

L

L∑
l=1

p(z(l))

q(z(l))
f (z(l))

The quantities rl = p(z(l))

q(z(l))
are known as importance weights.
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p(z) f(z)

z

q(z)

The importance weights correct the bias from a wrong distribution.

There’s no strict bound requirement as in rejection sampling.

Unlike rejection sampling, all the samples are retained here.
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Importance sampling without normalization factor

p(z) = p̂(z)/Zp where p̂(z) can be evaluated easily but Zp is unknown.
Suppose q(z) = q̂(z)/Zq:

E (f ) =

∫
f (z)p(z)dz

=
Zq

Zp

∫
f (z)

p̂(z)

q̂(z)
q(z)dz

≈ Zq

Zp

1

L

L∑
l=1

r̂l f (z(l))

where r̂l = p̂(z(l))/q̂(z(l)).

Quiz: But how to estimate
Zq

Zp
?
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Zp

Zq
=

1

Zq

∫
p̂(z)dz =

∫
p̂(z)

q̂(z)
q(z)dz

≈ 1

L

L∑
l=1

r̂l

So

E [f ] ≈
L∑

l=1

wl f (z(l))

where

wl =
r̂l∑
m r̂m

Here wl can be considered as a normalized importance weight.
The core idea of using importance sampling is to transform a quantity to a
expectation with respect to a distribution.
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Basic Procedure

1 Use a proposal distribution q(z) to generate samples;

2 Calculate the weights for each sample r̂l = p̂(z(l))/q̂(z(l)).

3 Calculate the normalized weight rl .

4 Find out the expectation.
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Importance sampling applied to Graphical Models (1)

How to calculate the expectation given some variables observed?

Straightforward: ancestral sampling, throw away those inconsistent
samples.

Uniform Sampling: The joint distribution is obtained by first setting
those variables zi that are observed. Each remaining variables is then
sampled independently from a uniform distribution over the
probability space.

Then the weight of each sample is proportional to p(z). Essentially,
use a uniform distribution as proposal distribution.

Note that there’s no ordering of variables for sampling.

The posterior is far from uniform, so generally lead to poor result. For
continuous values, the probabilitiy could be very low; For discrete
values, the probability could be zero (as the sample might not be
real).
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Importance sampling applied to Graphical Models (2)

Likelihood Weighted Sampling: Based on ancestral sampling of
variables.

If the variable is observed, just set to its value for sampling; If not,
sample from the conditional distribution.

Essentially, a proposal distribution q such thtat

q(zi ) =

{
p(zi |pai ) zi /∈ e

1 zi ∈ e

r(z) =
∏
zi /∈e

p(zi |pai )

p(zi |pai )

∏
zi∈e

p(zi |pai )

1
=
∏
zi∈e

p(zi |pai )
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Limitations for Importance Sampling

As with rejection sampling, the success of importance sampling
depends crucially on how well the proposal distribution q(z) matches
the desired distribution p(z).

rl is dominated by few if p(z)f (z) is strongly varying, and has a
significant proportion of its mass concentrated over relatively small
region of z space. The effective sample size is actually much smaller
than L.

More severe if none of the sample falls into the regions where
p(z)f (z) is large. In this case, the variance of rl f (z(l)) could be
small, but the expectation is totally wrong!!

Key requirement for q(z): Not be small or zero in regions where p(z)
may be significant. The shape of proposal distribution better be
similar to the true distribution.
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Rejection sampling

The determination of a suitable constant k might be impractical.

Need to satisfy the bound requirement

Large k leads to extremely low acceptance rate.

Is it possible to relax the “tight bound” requirement for sampling?

Importance sampling does not require bound; and no rejection.

But only for computing the expectation.

Is it possible to combine importance weights with sampling?
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Sampling-importance-resampling(SIR)

SIR

Recall the idea of Boosting algorithm: adjust the weight of each data
point based on loss and then sample the data according to the
weights.

Similar idea for SIR:
1 Draw L samples from q(z): (z (1), z (2), · · · , z (L)).
2 Weights are calculated the same as in importance sampling.
3 A second set of L samples is drawn from the discrete distribution

(z (1), z (2), · · · , z (L)).
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Why SIR works?

p(z ≤ a) =
∑

l :z(l)≤a

wl

=

∑
l I (z(l) ≤ a)p̂(z(l))/q(z(l))∑

l p̂(z(l))/q(z(l))

Take L→∞, then

p(z ≤ a) =

∫
I (z ≤ a){p̂(z)/q(z)}q(z)dz∫
{p̂(z)/q(z)}q(z)dz

=

∫
I (z ≤ a)p̂(z)dz∫

p̂(z)dz

=

∫
I (z ≤ a)p(z)dz

Here, the normalization factor of p(z) is not required.
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Comments

1 Sampling-Importance-Resampling is an approximation, but reject
sampling is drawing samples from the true distribution.

2 Similar to rejection sampling, the approximation improves if the
sampling distribution q(z) get closer to the desired distribution.

3 When q(z) = p(z), the initial samples (z(1), z(2), · · · , z(L)) have
desired distribution and the weights wl = 1/L.

4 If moments with respect to z is required, they can be evaluated
similar to importance sampling.
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Monte Carlo EM algorithm

Sometimes, E-step in EM is intractable, especially proble Sampling
methods can be used to approximate the E-step of the EM algorithm.

Consider a model with hidden variables Z, visible variables X and
parameters θ. Then the expected complete-data log likelihood is

Q(θ, θold) =

∫
p(Z|X, θold) ln p(Z,X|θ)dz

We can approximate this integral by

Q(θ, θold) ' 1

L

L∑
l=1

ln p(Z(l),X|θ)

This procedure is called Monte Carlo EM algorithm.

A typical side effect of this approach is lesser tendancy to get stuck
into a local optima.
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Stochastic EM

A particular instance of Monte Carlo EM algorithm.

Consider a finite mixture model, and draw just one sample at each
E-step.

The latent variable Z denotes the mixture membership for generating
each data point.

Essentially make a hard assignment of each data point to one of the
components in the mixture.

In the M-step, the sampled approximation to the posterior is used to
update the model parameters in the usual way.

Might take a long time to converge. But how to determine
convergence?

Sometimes, a smoothing scheme is employed.

Q(t) = γQ(t − 1) + (1− γ)Q̂(t)
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IP Algorithm

Suppose we move from Maximum Likelihood approach to a full
Bayesian treatment: sample form the posterior distribution p(θ,Z|X).

Suppose direct sample from the posterior is computationally difficult
and it is relatively easy to sample from the complete-data parameter
posterior p(θ|Z,X).

This inspires the data augmentation algorithm which alternates
between imputation step and posterior step.
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IP Algorithm

1 I-step:

p(Z|X) =

∫
p(Z|θ,X)p(θ|X)dθ (1)

Draw θ(l) from current estimate for p(θ|X), and then use this to draw
a sample Z(l) from p(Z|θ(l),X).

2 P-step:

p(θ|X ) =

∫
p(θ|Z,X)p(Z|X)dZ

' 1

L

L∑
l=1

p(θ|Z(l),X)

Use samples {Z (l)} obtained from the I-step to compute a revised
estimate of the posterior distribution over θ.
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Brief Summary

1 Why use sampling methods?

2 How to sample from distributions based on a uniform sample
generator?

3 Rejection Sampling

4 Adaptive Rejection Sampling

5 Importance Sampling

6 Sampling-importance-resampling

7 Sampling and EM-algorithm
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