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Introduction

Linear parametric models for regression and classification.

Memory-based methods: Parzen probability density
estimation, k-nearest neighbor.

Storing the entire training set in order to make predictions for
future data.

Fast to “train”, but slow at prediction.

Is it possible to connect these two different formulations?

Lei Tang Kernel Methods



Introduction

Linear parametric models for regression and classification.

Memory-based methods: Parzen probability density
estimation, k-nearest neighbor.

Storing the entire training set in order to make predictions for
future data.

Fast to “train”, but slow at prediction.

Is it possible to connect these two different formulations?

Lei Tang Kernel Methods



Introduction

Linear parametric models for regression and classification.

Memory-based methods: Parzen probability density
estimation, k-nearest neighbor.

Storing the entire training set in order to make predictions for
future data.

Fast to “train”, but slow at prediction.

Is it possible to connect these two different formulations?

Lei Tang Kernel Methods



Dual Representations

Many Linear models for regression and classification can be
reformulated in terms of a dual representation in which kernel
function arises naturally.

J(w) =
1

2

N∑
n=1

{
wTφ(xn)− tn

}2
+

λ

2
wTw (1)
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The derivative with respect to w is

∇J(w) =
N∑

i=1

[
wTφ(xn)− tn

]
φ(xn) + λw = 0

=⇒ w = − 1

λ

N∑
n=1

{
wTφ(xn)− tn

}
=

N∑
n=1

anφ(xn) = ΦTa

an = − 1

λ

{
wTφ(xn)− tn

}
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Plug in the new formulation of w = ΦTa into J(w),

J(w) =
1

2
(Φw − t)T (Φw − t) +

λ

2
wTw

=
1

2
aTΦΦTΦΦTa− aT ΦΦT︸ ︷︷ ︸

K

t +
1

2
tT t +

λ

2
ΦΦTa

J(a) =
1

2
aTKKa− aTKt +

1

2
tT t +

λ

2
aTKa

=⇒ a = (K + λIN)−1t

y(x) = wTφ(x) = aTΦφ(x) = k(x)T (K + λIN)−1t = aTk(x)
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Advantages of dual methods

The dual formulation allows the solution to be expressed
entirely in terms of the kernel function k(x , x ′).

In dual formulation, need to invert a N × N matrix as

a = (K + λIN)−1t

In the original parameter, need to invert a M ×M matrix,

w = (λI + ΦTΦ)−1ΦT t

If number of instances is smaller than dimensionality, dual
formulation is preferred.

Dual formulation directly works on kernels, avoids the explicit
introduction of feature vector φ(x).
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The Representer Theorem

More general case:
Denote by Ω : [0,∞) → R a strictly monotonic increasing
function, by X a set, and by c an arbitrary loss function. Then
each minimizer f ∈ H of the regularized risk

c((x1, t1, f (x1)), · · · , (xN , tN , f (xN))) + Ω(||f ||H)

admits a representation of the form

f (x) =
N∑

n=1

ank(xn, x)

To be proved later ...
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A toy example

Define φ([x ]1, [x ]2) = ([x ]21, [x ]22,
√

2[x ]1[x ]2) or
φ([x ]1, [x ]2) = ([x ]21, [x ]22, [x ]1[x ]2, [x ]2[x ]1) Then

〈φ(x), φ(x ′)〉 = [x ]21[x
′]21 + [x ]22[x

′]22 + 2[x ]1[x ]2[x
′]1[x

′]2

= ([x ]1[x
′]1 + [x ]2[x

′]2)
2

= 〈x , x ′〉2

The dot product in the 3-dim space can be computed without
computing φ.
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More general case

Suppose the input vector dimension is M, and we define the feature
mapping as to all the d-th order products (monomials) of [x ]j of x

[x ]j1 · [x ]j2 · · · [x ]jd

After mapping, the dimension becomes Md . To compute the inner
product, require at least O(Md) operations.

〈φd(x), φd(x ′)〉 =
M∑

j1=1

M∑
j2=1

· · ·
M∑

jd=1

[x ]j1 · · · [x ]jd · [x
′]j1 · · · [x ′]jd

=
M∑

j1=1

[x ]j1 · [x ′]j1 · · ·
M∑

jd=1

[x ]jd [x
′]jd

=

 M∑
j=1

[x ]j · [x ′]j

d

= 〈x , x ′〉d

Requires only O(M) computation to get the inner product.
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Myths of Kernel

Kernel is a similarity measure

Kernel corresponds to dot products in feature space H via a
mapping φ.

k(x , x ′) = 〈φ(x), φ(x ′)〉

Questions

1 What kind of kernel functions admits the above form?

2 Give a kernel, how to construct an associated feature space?
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Positive Definite Kernels

Gram Matrix

Given a function k : X 2 → R, and input x1, · · · xN ∈ X , then the
matrix

Kij := k(xi , xj)

is called the Gram matrix.

Positive Definite Kernel

A function k on X × X which for any number of
x1, x2, · · · , xN ∈ X gives rise to a positive semi-definite Gram
matrix, is called a positive definite matrix.

A positive definite kernel can always be written as inner products
of some feature mapping!
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A Wake-Up Quiz

Cauchy-Schwartz Inequality for Kernels

If k is a positive definite kernel, then

|k(x1, x2)|2 ≤ k(x1, x1) · k(x1, x2)
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Reproducing Kernel Map

A positive definite kernel can always be written as inner products
of some feature mapping!
The strategy to prove:

Define a feature mapping φ into some vector space.

Define a dot product (strictly a positive definite bilinear form)

Show that k(x , x ′) = 〈φ(x), φ(x ′)〉
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Feature Map

Define a feature map φ from X to the space of functions:

φ(x) = k(·, x)

where k(·, x) denotes the function that assigns the value
k(x ′, x) to x ′ ∈ X .
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Vector Space

Let the space be all the vectors that can be represented as the
following form:

f (·) =
m∑

i=1

αik(·, xi )

Here m ∈ N , αi ∈ R and x1, x2, · · · , xm ∈ X are arbitrary.

We define the dot product as below:

g(·) =
m′∑
j=1

βjk(·, xj) (2)

where m′ ∈ N , βj ∈ R, and x ′1, x
′
2, · · · , x ′m′ ∈ X . So

〈f , g〉 :=
m∑

i=1

m′∑
j=1

αiβjk(xi , x
′
j )

Need to show the above is a valid inner product.
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Review of Inner Product

Bilinear Form

A bilinear form on a vector space H is a function Q : H×H → R
such that

Q((λx + λ′x ′), x ′′) = λQ(x , x ′′) + λ′Q(x ′, x ′′)

Q(x ′′, (λx + λ′x ′)) = λQ(x ′′, x) + λ′Q(x ′, x ′′)

where x , x ′, x ′′ ∈ X and λ, λ′ ∈ R.
If Q(x , x ′) = Q(x ′, x), then Q is a symmetric bilinear form.

Dot Product

A dot product on a vector space H is a symmetric bilinear form
that is strictly positive definite; in other words, for all x ∈ X ,
〈x , x〉 ≥ 0, with equality only for x = 0.
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〈f , g〉 :=
m∑

i=1

m′∑
j=1

αiβjk(xi , x
′
j )

It’s bilinear as

〈f , g〉 =
m′∑
j=1

βj f (x ′j ) 〈f , g〉 =
m∑

i=1

αig(xi )

It’s symmetric as 〈f , g〉 = 〈g , f 〉.
It’s positive definite as

〈f , f 〉 =
m∑

i ,j=1

αiαjk(xi , xj) ≥ 0 (Definition of positive kernel)

Remains to show 〈f , f 〉 = 0 ⇐⇒ f = 0.
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Reproducing Kernel

〈k(·, x), f 〉 = f (x)

〈k(·, x), k(·, x ′)〉 = k(x , x ′) reproducing kernel property

So positive definite kernels k are also called reproducing kernels.

Note that 〈··〉 is a positive kernel in the space of functions as

∑
i ,j=1

γi , γj〈fi , fj〉 = 〈
γi∑

i=1

fi ,

γj∑
j=1

fj〉 ≥ 0

Based on the result of our quiz, we have

|f (x)|2 = |〈k(·, x), f 〉|2 ≤ k(x , x) · 〈f , f 〉

So 〈f , f 〉 = 0 =⇒ f (x) = 0.
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Rivisit Feature Map

Define a feature map φ from X to the space of functions:

φ(x) = k(·, x)

where k(·, x) denotes the function that assigns the value
k(x ′, x) to x ′ ∈ X .

Any positive definite kernel can be thought of as a dot
product in another space.

Here, our proof is one possible instantiation of the feature
space associated with a kernel, but not unique.
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Reproducing Kernel Hilbert Spaces (RKHS)

In previous example, the space of functions is a dot product
space, or equivalently pre-Hilbert space.

Hilbert space is generalizes the notion of Euclidean space in a
way that extends methods of vector algebra from the
two-dimensional plane and three-dimensional space to
infinite-dimensional spaces.

A Hilbert space is an inner product space an abstract vector
space in which distances and angles can be measured.
Hilbert space is ”complete”, meaning that if a sequence of
vectors approaches a limit, then that limit is guaranteed to be
in the space as well.
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Reproducing Kernel Hilbert Spaces (RKHS)

RKHS

Let X be a nonempty set (often called index set) and H a Hilbert
space of functions f : X → R, Then H is called a reproducing
kernel Hilbert space endowed with the dot product 〈·, ·〉 (and the
norm ||f || :=

√
〈f , f 〉 ) if there exists a function k : X × X → R

with the following properties:

1 k has reproducing property: 〈f , k(x , ·)〉 = f (x) for all f ∈ H;
In particular, k(x , ·), k(x ′, ·)〉 = k(x , x ′)

2 k spans H.

RKHS uniquely determines k

Assume two different kernels k and k ′, we have

〈k(x , ·), k ′(x ′, ·)〉 = k(x , x ′) = k ′(x ′, x)

Contradiction!
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Mercer’s Kernel Map

Define another feature mapping from x to a function (an
integral operator) Hilbert space

Then, the kernel is decomposed as the summation of the
eigenfunctions.

It turns out Mercer’s kernel map is also positive definite.

Too complicated to understand. So we skip the details...
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Kernel Trick

Kernel Trick

Given an algorithm which is formulated in terms of a positive
kernel (or inner products), one can construct an alternative
algorithm by replacing k by another positive definite kernel k̂.

Examples of Kernels

Linear kernel: k(x , x ′) = xT x ′

Polynomial: k(x , x ′) =< x , x ′ >d

Inhomogeneous Polynomial: k(x , x ′) = (< x , x ′ > +c)d

Gaussian: k(x , x ′) = exp
(
− ||x−x ′||2

2σ2

)
......
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Constructing Kernels

A valid kernel should positive definite or can be written as the
inner product in some feature space.
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Gaussian Kernel

The Gaussian Kernel

k(x , x ′) = exp(−||x − x ′||2

2σ2
)

is a valid kernel.

k(x , x ′) = exp(−xT x

2σ2
)exp(

xT x ′

σ2
)exp(−x ′T x ′

2σ2
)

= f (x)exp(xT x ′/σ2)f (x ′)

Quiz

Show the feature vector that corresponds to the Gaussian kernel
has infinite dimensionality.
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Kernel and Distance

As kernel is considered the similarity, we can calculate
distance based on kernels.

||x − x ′||2 = < x , x > + < x ′, x ′ > −2 < x , x ′ >

= k(x , x) + k(x ′, x ′)− 2k(x , x ′)

Gaussian Kernel can be extended to other distance measure
instead of Euclidean distance.

k(x , x ′) = exp

{
− 1

2σ2

(
k(x , x) + k(x ′, x ′)− 2k(x , x ′)

)}
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Kernels over sets

Kernels extend to input that are symbolic, rather than simply
vectors of real numbers.

Kernels can be defined over objects as graphs, sets, strings,
and text documents.

A toy example, a fixed set and define a nonvectorial space
consisting of all possible subsets of this set. If A1 and A2 are
two such subsets, then one simple choice of kernel would be

k(A1,A2) = 2|A1∩A2|

Quiz: Show this is a valid kernel.
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Kernels to connect generative/discriminative models(1)

Generative models can naturally handle missing data and
varying length in the case of hidden Markov models.

Discriminative models perform better on discriminative tasks

One way to combine them is to use a generative model to
define a kernel and then use this kernel in a discriminative
approach.

One example:
k(x , x ′) = p(x)p(x ′)

Two inputs are similar if they both have higher probabilities.
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Kernels to connect generative/discriminative models(2)

Two inputs are similar if they ave significant probability under
a range of different components.

k(x , x ′) =

∫
p(x |z)p(x ′|z)p(z)dz

where z is the latent variable.

Suppose data consists of ordered sequence of length L, so an
observation is

X = {x1, · · · , xL}

Hidden states Z = {z1, · · · , zL}
K (X ,X ′) =

∑
Z P(X |Z )P(X ′|Z )P(Z )

This model can be easily extended to allow sequence of
different length to be compared.
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Fisher Kernel

Consider the gradient with respect to θ, which defines a vector
in a ’feature’ space having the same dimensionality as θ.

Fisher score:
g(θ, x) = ∇θ ln p(x |θ)

Fisher kernel is defined by

k(x , x ′) = g(θ, x)tF−1g(θ, x ′) (3)

where F is the Fisher information matrix, given by

F = Ex [g(θ, x)g(θ, x)T ] (4)

Empirically, F is estimated by the sample average, which
corresponds to the covariance matrix of the Fisher scores.

Has been applied to document retrieval.

Lei Tang Kernel Methods



Sigmodial Kernel

k(x , x ′) = tanh(axT x ′ + b)

Its Gram matrix in general is not positive semidefinite, thus
it’s a invalid kernel.

It gives SVM a superficial resemblance to neural network
models.

A Bayesian neural network with appropriate prior reduces to a
Gaussian process. We’ll discuss next time.
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Radial Basis Function Network

Regression based on a fixed basis functions.

Radial basis function, which have the property that each basis
function depends only on the radial distance (typically
Euclidean) from a centre µj , so

φj(x) = h(||x − µj ||)

Historically, radial basis functions were introduced for exact
function interpolation.

f (x) =
N∑

n=1

wnh(||x − xn||) (5)

Same number of coefficients and constraints, the result will fit
every target value exactly. Over-fitting!

Motivation from other perspectives: regularization theory,
noisy inputs.
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Radial Basis Function Network

Normalization might be required in practice.

How to choose data point with large scale of training data?

Randomly choose subsets of data points
Orthogonal least squares: a sequential selection process in
which each step the next data point to be chosen as a basis
function entry corresponds to the one that gives the greatest
reduction in the error.

The same problem as Reduced SVM.
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Nadaraya-Watson model

Parzen density estimator to model the joint distribution p(x , t)

p(x , t) =
1

N

N∑
n=1

f (x − xn, t − tn) (6)

where f (x , t) is the component density function and one
component on each data point.
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The result y(x) =
∑

n k(x , xn)tn is known as
Nadaraya-Watson model or kernel regression.

Notice that
∑N

n=1 k(x , xn) = 1.

The conditional probability can be calculated as
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Summary

Dual Representation

Kernel

How to construct a kernel

Various Kernels

Radial Basis Functions

Gaussian Process
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