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Multi-Mode Network

� Multi-Mode Network

� multiple mode of actors

� Heterogeneous interactions

� More complicated cases:

� Actor attributes

� Self interaction
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Community Evolution

� Actors in a network tends to form groups/communities.

� Communities of different modes are correlated.

� Researchers working on data mining attending conferences with 
similar topics : ICML, KDD, ICDM

� Community membership evolves gradually.

A researcher could divert his research interest� A researcher could divert his research interest

� Hot topics change gradually

� Different modes present different evolution pattern.

� The venue community is much more stable

� Needs to identify community evolution in dynamic multi-

mode networks.



Discovery Community Evolution

� Given:

� Multiple consecutive snapshots of the multi-mode network 

� Output:

� Identify community membership evolution

� Possible Applications:

� Detect user interests shift leading to more effective targeting

� Browse history of networks by showing the long-term trend

� Anomaly / Buzz detection

� ……



Spectral Approach

Interaction Approximation

Temporal Smoothness

Spectral 

Relaxation
s.t.

+



Solution

� Difficult to find global solution

� Much easier when performing block alternating optimization

� Optimal Aij can be solved given Ci and Cj at timestamp t

Other cluster 
� Optimal Ci at time t can be computed given other Cj

Other cluster 

indicators 

are just 

attributes



Extensions to realistic cases

� Online Clustering

� Inactive Actors

� Delete the corresponding entry in Ci

� Emerging Actors� Emerging Actors

� Add an entry in Ci with default value 0

� Actor Attributes

�

� Within-mode Interaction

� Add to the similarity matrix calculated via “attributes”



Algorithm



Experiments

� Two publically available real-world data
� Enron data (Apr. 2001 – Mar.2002)

� 3 modes: people, email, words

� DBLP data (1980 – 2004)
� 4 modes: authors(347013) , papers(491726), venues(2826), 

terms(9523)

� Methods:� Methods:
� Independent clustering (without temporal information)

� Online  Clustering (only consider temporal information in the past)

� Evolutionary Clustering 

� Evaluation
� No ground truth
� Adopt “cross-validation” strategy
� Relative measure to compare different methods:

� constant - approximation error (the larger, the better)



Performance on Enron 

� Evolutionary Clustering consistently approximates the 

Interaction better most of the time. 

� Independent Clustering outperforms others when there’s 

enough interaction traffic.
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Performance on DBLP

� 11 out of 15 years, evolutionary outperforms other 

clustering approaches.

� The other 4 winners are online clustering.

� Example:

� NIPS: � NIPS: 

� Aligned with Neural Network conferences in 1995

� More with machine learning in 2004



Computation Time

� Algorithm typically converges in few iterations

� All three methods demonstrate computation time of the 

same order

� The majority of the computation time is actually spent on 

K-means rather than SVDK-means rather than SVD



Conclusions

� A spectral approach to address community evolutionary 
clustering in dynamic multi-mode networks.

� Easy to extend to handle hibernating/emerging actors, 
actor attributes, within-mode interaction.

� Empirically find more accurate community structure.Empirically find more accurate community structure.

� In this framework, we only capture the membership 
change. Currently trying to develop new algorithm to 
simultaneously detect 
� Micro-evolution (membership change)

� Macro-evolution (group interaction change)


