# A Framework for Learnig Predictive Structures from Multiple Tasks and Unlabeled Data

#### Rie Kubota Ando and Tong Zhang

IBM Watson Research Center Yahoo Research

Nov. 20th, 2006

#### 1 Introduction

2 Structural Learning Problem

#### 3 Algorithm



# Semi-supervised Learning

# • Large amount of unlabeled data, while labeled data are very costly

- Various methods: transductive inference, co-training (basically label propagation), fails when noise is introduced into classification through non-perfect classification.
- Another direction: define a good functional structures using unlabeled data. (what is a structure? distance, kernel, manifold) But a graph structure might not be predictive.
- Can we learn a predictive structure?
- Yes, if we have multiple related tasks.

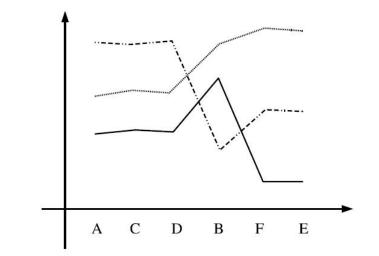
- Large amount of unlabeled data, while labeled data are very costly
- Various methods: transductive inference, co-training (basically label propagation), fails when noise is introduced into classification through non-perfect classification.
- Another direction: define a good functional structures using unlabeled data. (what is a structure? distance, kernel, manifold) But a graph structure might not be predictive.
- Can we learn a predictive structure?
- Yes, if we have multiple related tasks.

- Large amount of unlabeled data, while labeled data are very costly
- Various methods: transductive inference, co-training (basically label propagation), fails when noise is introduced into classification through non-perfect classification.
- Another direction: define a good functional structures using unlabeled data. (what is a structure? distance, kernel, manifold) But a graph structure might not be predictive.
- Can we learn a predictive structure?
- Yes, if we have multiple related tasks.

- Large amount of unlabeled data, while labeled data are very costly
- Various methods: transductive inference, co-training (basically label propagation), fails when noise is introduced into classification through non-perfect classification.
- Another direction: define a good functional structures using unlabeled data. (what is a structure? distance, kernel, manifold) But a graph structure might not be predictive.
- Can we learn a predictive structure?
- Yes, if we have multiple related tasks.

- Large amount of unlabeled data, while labeled data are very costly
- Various methods: transductive inference, co-training (basically label propagation), fails when noise is introduced into classification through non-perfect classification.
- Another direction: define a good functional structures using unlabeled data. (what is a structure? distance, kernel, manifold) But a graph structure might not be predictive.
- Can we learn a predictive structure?
- Yes, if we have multiple related tasks.

- **1** Structural learning from multiple tasks
- **2** Use unlabeled data to generate auxiliary(related) tasks.



The intrinsic distance metric should force A, C, D "close" to each other, and F and E to each other.

#### Supervised Learning

Find a predictor in the hypothesis space.

- Estimation error: The smaller the space is, the easier to learn a best predictor given limited samples.
- Approximation error: caused by a restricted size of hypothesis
- Need a trade-off of these two types of errors (model selection)

#### Model Selection

- Cross validation
- Can achieve better result if we have multiple problems on the same underlying domain.

#### Supervised Learning

Find a predictor in the hypothesis space.

- Estimation error: The smaller the space is, the easier to learn a best predictor given limited samples.
- Approximation error: caused by a restricted size of hypothesis
- Need a trade-off of these two types of errors (model selection)

#### Model Selection

- Cross validation
- Can achieve better result if we have multiple problems on the same underlying domain.

#### Supervised Learning

Find a predictor f such that

$$R(f) = E_{\mathbf{X},Y}L(f(\mathbf{X}),Y))$$

Empirically, we use the loss on training data as an indicator.

$$\hat{f} = \arg\min_{f \in \mathcal{H}} \sum_{i=1}^{n} L(f(X_i), Y_i)$$

To avoid over-fitting, usually some regularization term is added

$$\hat{f} = \arg\min_{f \in \mathcal{H}} \sum_{i=1}^{n} L(f(X_i), Y_i) + \underbrace{g(f)}_{\text{Regularization term}}$$

# Joint Empirical Risk Minimization

In STL, the hypothesis space (bias) is fixed.

$$\hat{f} = \arg\min_{f\in\mathcal{H}}\sum_{i=1}^{n} L(f(X_i), Y_i) + g(f)$$

Use parameter  $\theta$  to represent the hypothesis space, then

$$\hat{f}_{\theta} = \arg\min_{f\in\mathcal{H}(\theta)}\sum_{i=1}^{n}L(f(X_i), Y_i) + g(f)$$

For multiple related tasks, we want to find the hypothesis shared by all these tasks. (To determine a proper  $\theta$ )

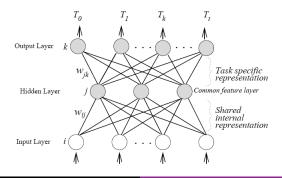
$$[\hat{f}_l, \hat{\theta}] = \arg\min_{f_l, \theta} \left[ \underbrace{r(\theta)}_{\text{regularization}} + \sum_{l=1}^m \left( g(f_l(\theta)) + \frac{1}{n_l} \sum_{l=1}^{n_l} L(f_l(\theta), X_i^l, Y_i^l) \right) \right]$$

### Structural Learning with Linear Predictors

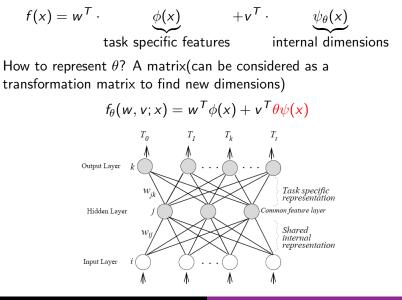
$$f(x) = w^{T} \cdot \underbrace{\phi(x)}_{\text{task specific features}} + v^{T} \cdot \underbrace{\psi_{\theta}(x)}_{\text{internal dimensions}}$$

How to represent θ? A matrix(can be considered as a transformation matrix to find new dimensions)

 $f_{\theta}(w, v; x) = w^{T} \phi(x) + v^{T} \theta \psi(x)$ 



### Structural Learning with Linear Predictors



Lei Tang Framework for Structural Learning

# Alternating structure optimization(1)

Assume  $\phi(x) = \psi(x) = x$ , it follows that

$$[\{\hat{w}_{l}, \hat{v}_{l}\}, \hat{\theta}] = \arg\min_{\{w_{l}, v_{l}\}, \theta} \sum_{l=1}^{m} \left( \frac{1}{n_{l}} \sum_{i=1}^{n_{l}} L((w_{l} + \theta^{T} v_{l})^{T} X_{i}^{l}, Y_{i}^{l}) + \lambda_{l} ||w_{l}||_{2}^{2} \right)$$

s.t. 
$$\theta \theta^{T} = I$$
  
equivalent to regularization

Let  $u = w + v\theta^T$ , then  $f(x) = u^T x$ .

$$\min \sum_{l=1}^{m} \left( \frac{1}{n_l} \sum_{i=1}^{n_l} L(u_l^T X_i^l, Y_i^l) + \lambda_l ||u_l - \theta^T v_l||_2^2 \right)$$
  
s.t.  $\theta \theta^T = l$ 

# Alternating structure optimization(1)

Assume 
$$\phi(x) = \psi(x) = x$$
, it follows that

$$[\{\hat{w}_{l}, \hat{v}_{l}\}, \hat{\theta}] = \arg\min_{\{w_{l}, v_{l}\}, \theta} \sum_{l=1}^{m} \left( \frac{1}{n_{l}} \sum_{i=1}^{n_{l}} L((w_{l} + \theta^{T} v_{l})^{T} X_{i}^{l}, Y_{i}^{l}) + \lambda_{l} ||w_{l}||_{2}^{2} \right)$$

s.t. 
$$\theta \theta^{T} = I$$

equivalent to regularization

Let  $u = w + v\theta^T$ , then  $f(x) = u^T x$ .

$$\min \sum_{l=1}^{m} \left( \frac{1}{n_l} \sum_{i=1}^{n_l} L(u_l^T X_i^l, Y_i^l) + \lambda_l ||u_l - \theta^T v_l||_2^2 \right)$$
  
s.t.  $\theta \theta^T = l$ 

# Alternating structure optimization (2)

### Algorithm

- Fix  $(\theta, v)$ , optimize with respect to u (a convex optimization problem)
- **②** Fix *u*, optimize with respect to  $(\theta, v)$ . It turns out  $\theta$  are the top left eigenvectors for the SVD of a matrix

$$U = \left[\sqrt{\lambda_1}u_1, \sqrt{\lambda_2}u_2, \cdots, \sqrt{\lambda_m}u_m\right]$$

- Iterate until convergence.
- Usually one iteration is enough.

#### Connection to PCA

- PCA find the "principal components" of data points.
- *u<sub>l</sub>* is actually the predictor for task *l*. It is finding the "principal components" of the predictors.
- Each predictor is considered a point in the predictor space.

# Alternating structure optimization (2)

### Algorithm

- Fix  $(\theta, v)$ , optimize with respect to u (a convex optimization problem)
- **②** Fix *u*, optimize with respect to  $(\theta, v)$ . It turns out  $\theta$  are the top left eigenvectors for the SVD of a matrix

$$U = \left[\sqrt{\lambda_1}u_1, \sqrt{\lambda_2}u_2, \cdots, \sqrt{\lambda_m}u_m\right]$$

- Iterate until convergence.
- Usually one iteration is enough.

#### Connection to PCA

- PCA find the "principal components" of data points.
- *u<sub>l</sub>* is actually the predictor for task *l*. It is finding the "principal components" of the predictors.
- Each predictor is considered a point in the predictor space.

- **()** Learn structure parameter  $\theta$  by joint empirical risk minimization.
- **(2)** Learn a predictor based on  $\theta$

#### How to generate auxiliary problems?

- Automatic labeling.
- Relevancy.

Two strategies:

- Unsupervised
- Semi-supervised

- Learn structure parameter  $\theta$  by joint empirical risk minimization.
- **(2)** Learn a predictor based on  $\theta$

#### How to generate auxiliary problems?

- Automatic labeling.
- Relevancy.
- Two strategies:
  - Unsupervised
  - Semi-supervised

- **()** Learn structure parameter  $\theta$  by joint empirical risk minimization.
- **(2)** Learn a predictor based on  $\theta$

#### How to generate auxiliary problems?

- Automatic labeling.
- Relevancy.

#### Two strategies:

- Unsupervised
- Semi-supervised

Two problems: text categorization, word tagging.

#### Predicting observable sub-structure

Mask some features as unobserved, learn classifiers to predict these "masked" features.

$$W_1 = \{" stadium", " scientist", " stock" \};$$
  
 $W_2 = \{" baseball", " basketball", " physics", " marker" \}$ 

- Let  $W_1$  be unobserved. predict whether "stadium" occurs more than other two words in the document.
- Predict the words at current position given the words on the left and right.

# Predicting the behavior of target classifier(semi-supervised)

- Train a classifier T<sub>1</sub> with labeled data for the target task, using feature map \(\phi\_1\).
- **2** Propogate the labels to unlabeled data.
- **3** Learn structural parameter  $\theta$  by joint ERM on the auxiliary problems using feature map  $\phi_2$ .
- Generation of the second secon

#### Several examples

- Predict the prediction of classifier  $T_1$
- Predict the top-k choices of the classifier
- Predict the range of confidence values produced by the classifier (whether the confidence value is larger than a threshold)

# Predicting the behavior of target classifier(semi-supervised)

- Train a classifier T<sub>1</sub> with labeled data for the target task, using feature map \(\phi\_1\).
- **2** Propogate the labels to unlabeled data.
- **3** Learn structural parameter  $\theta$  by joint ERM on the auxiliary problems using feature map  $\phi_2$ .
- Generation of the second secon

#### Several examples

- Predict the prediction of classifier  $T_1$
- Predict the top-k choices of the classifier
- Predict the range of confidence values produced by the classifier (whether the confidence value is larger than a threshold)

### Experiments

#### Data sets

- Text categorization (20-newsgroup, RCV1)
- named entity chunking experiment (CoNLL'03 corpora)
- Part-of-Speech tagging (Brown corpus)
- Hand-written digit image classification (MNIST)

• supervised learning based on Huber's robust loss

$$L(p,y) = egin{cases} max(0,1-py)^2 & \mbox{if } py \geq -1 \ -4py & \mbox{otherwise} \end{cases}$$

- semi-supervised learning proposed by this work with different auxiliary problems
- Co-training
- One manifold learning method (See *Semi-supervised learning* on *Riemannian manifolds*)

### Experiments

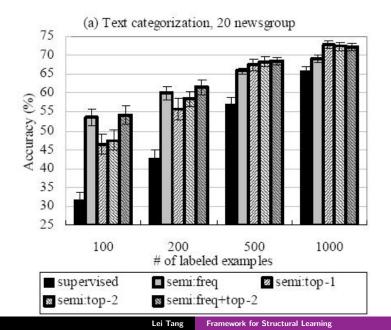
#### Data sets

- Text categorization (20-newsgroup, RCV1)
- named entity chunking experiment (CoNLL'03 corpora)
- Part-of-Speech tagging (Brown corpus)
- Hand-written digit image classification (MNIST)
- supervised learning based on Huber's robust loss

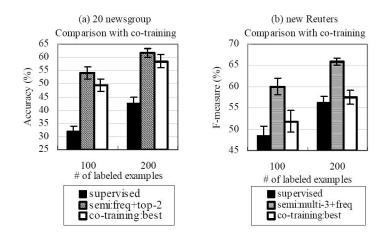
$$L(p,y) = egin{cases} max(0,1-py)^2 & \textit{if } py \geq -1 \ -4py & \textit{otherwise} \end{cases}$$

- semi-supervised learning proposed by this work with different auxiliary problems
- Co-training
- One manifold learning method (See *Semi-supervised learning* on *Riemannian manifolds*)

# Accuracy on Text

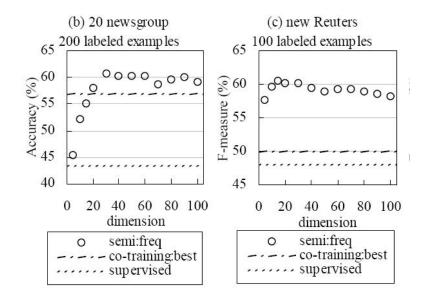


# Comparison to Co-training



| # of labeled | BN04 best  | ASO-semi |
|--------------|------------|----------|
| examples     | (manifold) |          |
| 100          | 39.8       | 54.1     |
| 200          |            | 61.6     |
| 500          | 59.9       | 68.5     |
| 1000         | 64.0       | 72.3     |

# Sensitivity to internal dimensions



### Interpretations of Internal dimensions

| ro | w# | features                                                                           |  |  |
|----|----|------------------------------------------------------------------------------------|--|--|
| 2  | +  | pc, vesa, ibm, boards Computer vs religion                                         |  |  |
|    | _  | god, christian, bible, exist, doctrine, nature, worship, athos.rutgers.edu         |  |  |
| 3  | +  | team, detroit, series, leafs, play, cup, playoffs, played, penguins, devils        |  |  |
|    | -  | israel, peace, jewish, lebanese, israelis, land, gaza, civilians, palestine, syria |  |  |
| 4  | +  | files, jpeg, pov, utility, ms-windows, icon Sports vs Middle east issues           |  |  |
|    | -  | eisa, nubus, agents, attorney                                                      |  |  |
| 5  |    | oil, bikes, front, brake, rear, transmission, owner, driving, dogs, highway        |  |  |
|    | -  | printer, hp, ink, appreciate, bj-200, toner, printing, bubblejet, laserjet, gcc    |  |  |

- This method seems way too good. But actually it's not.
- I tried Information Gain to select 2000 features and run NBC on 20 newsgroup, and it performs comparable to their method, sometimes a significant improvement.
- I think this method is basically adding some features to the original feature space. Unfortunately, no comparison with PCA+supervised learning.
- Why this method works is still not clear to me? The authors argue that "adding irrelevant features won't hurt, but adding relevant features will yield a huge gain". Why?? Can we inject 1000 random features to the data set? Still work?
- They provide a theory to show MTL's perform gain is guaranteed. But actually, we only care about the target task. What if on average it improves, but target task's performance decreases? MTL ≠ target task!!!
- Only works on high dimensional data?
- Currently, no MTL method compared to this work.

- This method seems way too good. But actually it's not.
- I tried Information Gain to select 2000 features and run NBC on 20 newsgroup, and it performs comparable to their method, sometimes a significant improvement.
- I think this method is basically adding some features to the original feature space. Unfortunately, no comparison with PCA+supervised learning.
- Why this method works is still not clear to me? The authors argue that "adding irrelevant features won't hurt, but adding relevant features will yield a huge gain". Why?? Can we inject 1000 random features to the data set? Still work?
- They provide a theory to show MTL's perform gain is guaranteed. But actually, we only care about the target task. What if on average it improves, but target task's performance decreases? MTL ≠ target task!!!
- Only works on high dimensional data?
- Currently, no MTL method compared to this work.

- This method seems way too good. But actually it's not.
- I tried Information Gain to select 2000 features and run NBC on 20 newsgroup, and it performs comparable to their method, sometimes a significant improvement.
- I think this method is basically adding some features to the original feature space. Unfortunately, no comparison with PCA+supervised learning.
- Why this method works is still not clear to me? The authors argue that "adding irrelevant features won't hurt, but adding relevant features will yield a huge gain". Why?? Can we inject 1000 random features to the data set? Still work?
- They provide a theory to show MTL's perform gain is guaranteed. But actually, we only care about the target task. What if on average it improves, but target task's performance decreases? MTL ≠ target task!!!
- Only works on high dimensional data?
- Currently, no MTL method compared to this work.

- This method seems way too good. But actually it's not.
- I tried Information Gain to select 2000 features and run NBC on 20 newsgroup, and it performs comparable to their method, sometimes a significant improvement.
- I think this method is basically adding some features to the original feature space. Unfortunately, no comparison with PCA+supervised learning.
- Why this method works is still not clear to me? The authors argue that "adding irrelevant features won't hurt, but adding relevant features will yield a huge gain". Why?? Can we inject 1000 random features to the data set? Still work?
- They provide a theory to show MTL's perform gain is guaranteed. But actually, we only care about the target task. What if on average it improves, but target task's performance decreases? MTL ≠ target task!!!
- Only works on high dimensional data?
- Currently, no MTL method compared to this work.

- This method seems way too good. But actually it's not.
- I tried Information Gain to select 2000 features and run NBC on 20 newsgroup, and it performs comparable to their method, sometimes a significant improvement.
- I think this method is basically adding some features to the original feature space. Unfortunately, no comparison with PCA+supervised learning.
- Why this method works is still not clear to me? The authors argue that "adding irrelevant features won't hurt, but adding relevant features will yield a huge gain". Why?? Can we inject 1000 random features to the data set? Still work?
- They provide a theory to show MTL's perform gain is guaranteed. But actually, we only care about the target task. What if on average it improves, but target task's performance decreases? MTL ≠ target task!!!
- Only works on high dimensional data?
- Currently, no MTL method compared to this work.

- This method seems way too good. But actually it's not.
- I tried Information Gain to select 2000 features and run NBC on 20 newsgroup, and it performs comparable to their method, sometimes a significant improvement.
- I think this method is basically adding some features to the original feature space. Unfortunately, no comparison with PCA+supervised learning.
- Why this method works is still not clear to me? The authors argue that "adding irrelevant features won't hurt, but adding relevant features will yield a huge gain". Why?? Can we inject 1000 random features to the data set? Still work?
- They provide a theory to show MTL's perform gain is guaranteed. But actually, we only care about the target task. What if on average it improves, but target task's performance decreases? MTL ≠ target task!!!
- Only works on high dimensional data?
- Currently, no MTL method compared to this work.

- This method seems way too good. But actually it's not.
- I tried Information Gain to select 2000 features and run NBC on 20 newsgroup, and it performs comparable to their method, sometimes a significant improvement.
- I think this method is basically adding some features to the original feature space. Unfortunately, no comparison with PCA+supervised learning.
- Why this method works is still not clear to me? The authors argue that "adding irrelevant features won't hurt, but adding relevant features will yield a huge gain". Why?? Can we inject 1000 random features to the data set? Still work?
- They provide a theory to show MTL's perform gain is guaranteed. But actually, we only care about the target task. What if on average it improves, but target task's performance decreases? MTL ≠ target task!!!
- Only works on high dimensional data?
- Currently, no MTL method compared to this work.

#### Contributions

- A framework for MTL(seems robust to unrelated tasks)
- Automatically generate auxiliary problems

|                   | data-mining                                                  | structural-mining                 |
|-------------------|--------------------------------------------------------------|-----------------------------------|
| space of interest | data space                                                   | predictor space                   |
| instances         | data-points                                                  | predictors from multiple tasks    |
| uncertainty       | measurement error                                            | estimation error                  |
| goal              | find patterns in data                                        | find structures of the predictors |
| predictive power  | maybe                                                        | yes                               |
| duality           | a data point is a predictor of points in the predictor-space |                                   |

Figure 16: Data mining versus structural mining

#### Contributions

- A framework for MTL(seems robust to unrelated tasks)
- Automatically generate auxiliary problems

|                   | data-mining                                                  | structural-mining                 |
|-------------------|--------------------------------------------------------------|-----------------------------------|
| space of interest | data space                                                   | predictor space                   |
| instances         | data-points                                                  | predictors from multiple tasks    |
| uncertainty       | measurement error                                            | estimation error                  |
| goal              | find patterns in data                                        | find structures of the predictors |
| predictive power  | maybe                                                        | yes                               |
| duality           | a data point is a predictor of points in the predictor-space |                                   |

Figure 16: Data mining versus structural mining