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Semi-supervised Learning

Large amount of unlabeled data, while labeled data are very
costly

Various methods: transductive inference, co-training (basically
label propagation), fails when noise is introduced into
classification through non-perfect classification.

Another direction: define a good functional structures using
unlabeled data. (what is a structure? distance, kernel,
manifold) But a graph structure might not be predictive.

Can we learn a predictive structure?

Yes, if we have multiple related tasks.
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Learning Predictive Structures

1 Structural learning from multiple tasks

2 Use unlabeled data to generate auxiliary(related) tasks.
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A toy example

The intrinsic distance metric should force A, C , D “close” to each
other, and F and E to each other.
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Connection to Hypothesis Space

Supervised Learning

Find a predictor in the hypothesis space.

Estimation error: The smaller the space is, the easier to learn
a best predictor given limited samples.

Approximation error: caused by a restricted size of hypothesis

Need a trade-off of these two types of errors (model selection)

Model Selection

Cross validation

Can achieve better result if we have multiple problems on the
same underlying domain.
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Empirical Risk Minimization(ERM)

Supervised Learning

Find a predictor f such that

R(f ) = EX,Y L(f (X),Y ))

Empirically, we use the loss on training data as an indicator.

f̂ = arg min
f ∈H

n∑
i=1

L(f (Xi ),Yi )

To avoid over-fitting, usually some regularization term is added

f̂ = arg min
f ∈H

n∑
i=1

L(f (Xi ),Yi ) + g(f )︸︷︷︸
Regularization term
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Joint Empirical Risk Minimization

In STL, the hypothesis space (bias) is fixed.

f̂ = arg min
f ∈H

n∑
i=1

L(f (Xi ),Yi ) + g(f )

Use parameter θ to represent the hypothesis space, then

f̂θ = arg min
f ∈H(θ)

n∑
i=1

L(f (Xi ),Yi ) + g(f )

For multiple related tasks, we want to find the hypothesis shared
by all these tasks. (To determine a proper θ)

[f̂l , θ̂] = arg min
fl ,θ

 r(θ)︸︷︷︸
regularization

+
m∑

l=1

(
g(fl(θ)) +

1

nl

nl∑
l=1

L(fl(θ),X
l
i ,Y

l
i )

)
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Structural Learning with Linear Predictors

f (x) = wT · φ(x)︸︷︷︸
task specific features

+vT · ψθ(x)︸ ︷︷ ︸
internal dimensions

How to represent θ? A matrix(can be considered as a
transformation matrix to find new dimensions)

fθ(w , v ; x) = wTφ(x) + vT θψ(x)
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Alternating structure optimization(1)

Assume φ(x) = ψ(x) = x , it follows that

[{ŵl , v̂l}, θ̂] =

arg min
{wl ,vl},θ

m∑
l=1

(
1

nl

nl∑
i=1

L((wl + θT vl)
TX l

i ,Y
l
i ) + λl ||wl ||22

)

s.t. θθT = I︸ ︷︷ ︸
equivalent to regularization

Let u = w + vθT , then f (x) = uT x .

min
∑m

l=1

(
1
nl

∑nl
i=1 L(uT

l X l
i ,Y

l
i ) + λl ||ul − θT vl ||22

)
s.t. θθT = I
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Alternating structure optimization (2)

Algorithm

1 Fix (θ, v), optimize with respect to u (a convex optimization
problem)

2 Fix u, optimize with respect to (θ, v). It turns out θ are the
top left eigenvectors for the SVD of a matrix

U = [
√
λ1u1,

√
λ2u2, · · · ,

√
λmum]

3 Iterate until convergence.

4 Usually one iteration is enough.

Connection to PCA

PCA find the “principal components” of data points.

ul is actually the predictor for task l . It is finding the
“principal components” of the predictors.

Each predictor is considered a point in the predictor space.
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Semi-supervised learning

1 Learn structure parameter θ by joint empirical risk
minimization.

2 Learn a predictor based on θ

How to generate auxiliary problems?

Automatic labeling.

Relevancy.

Two strategies:

Unsupervised

Semi-supervised
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Auxiliary Problem Generation(unsupervised)

Two problems: text categorization, word tagging.

Predicting observable sub-structure

Mask some features as unobserved, learn classifiers to predict these
“masked” features.

W1 = {”stadium”, ”scientist”, ”stock”};
W2 = {”baseball”, ”basketball”, ”physics”, ”marker”}

Let W1 be unobserved. predict whether “stadium” occurs
more than other two words in the document.

Predict the words at current position given the words on the
left and right.
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Predicting the behavior of target classifier(semi-supervised)

1 Train a classifier T1 with labeled data for the target task,
using feature map φ1.

2 Propogate the labels to unlabeled data.

3 Learn structural parameter θ by joint ERM on the auxiliary
problems using feature map φ2.

4 Train a final classifier based on θ and some appropriate
feature map φ3.

Several examples

Predict the prediction of classifier T1

Predict the top-k choices of the classifier

Predict the range of confidence values produced by the
classifier (whether the confidence value is larger than a
threshold)
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Experiments

Data sets

Text categorization (20-newsgroup, RCV1)

named entity chunking experiment (CoNLL’03 corpora)

Part-of-Speech tagging (Brown corpus)

Hand-written digit image classification (MNIST)

supervised learning based on Huber’s robust loss

L(p, y) =

{
max(0, 1 − py)2 if py ≥ −1

−4py otherwise

semi-supervised learning proposed by this work with different
auxiliary problems

Co-training

One manifold learning method (See Semi-supervised learning
on Riemannian manifolds)
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Accuracy on Text
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Comparison to Co-training
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Comparison to Manifold learning

Lei Tang Framework for Structural Learning



Sensitivity to internal dimensions
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Interpretations of Internal dimensions
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No silver bulletin

This method seems way too good. But actually it’s not.
I tried Information Gain to select 2000 features and run NBC
on 20 newsgroup, and it performs comparable to their
method, sometimes a significant improvement.
I think this method is basically adding some features to the
original feature space. Unfortunately, no comparison with
PCA+supervised learning.
Why this method works is still not clear to me? The authors
argue that “adding irrelevant features won’t hurt, but adding
relevant features will yield a huge gain”. Why?? Can we
inject 1000 random features to the data set? Still work?
They provide a theory to show MTL’s perform gain is
guaranteed. But actually, we only care about the target task.
What if on average it improves, but target task’s performance
decreases? MTL 6= target task!!!
Only works on high dimensional data?
Currently, no MTL method compared to this work.
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Conclusions

Contributions

A framework for MTL(seems robust to unrelated tasks)

Automatically generate auxiliary problems
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