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Problem
Bipartite Graph Model
Duality of word and document clustering

The past work focus on clustering on one axis(either document
or word)

Document Clustering: Agglomerative clustering, k-means,
LSA, self-organizing maps, multidimensional scaling etc.
Word Clustering: distributional clustering, information
bottleneck etc.

Co-clustering
simultaneous cluster words and documents!
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Problem
Bipartite Graph Model
Duality of word and document clustering

Adjacency Matrix Mij =
{

Eij , if there is an edge{i, j}
0, otherwise

Cut(V1, V2) =
∑

i∈V1,j∈V2

Mij

G = (D,W,E) where D: docs; W : words; E: edges
representing a word occurring in a doc.
The adjacency matrix:

M =
[

0 A|D|×|W |
AT 0

]
No links between documents; No links between words
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Problem
Bipartite Graph Model
Duality of word and document clustering

Disjoint document clusters: D1, D2, · · · , Dk

Disjoint word clusters: W1,W2, · · · ,Wk

Idea: Document clusters determine word clusters; word
clusters in turn determine (better) document clusters.
(seems familiar? recall HITS: Authorities/ Hub Computation)

The “best” partition is the k-way cut of the bipartite
graph.

cut(W1 ∪D1, · · · ,Wk ∪Dk) = min
V1,··· ,Vk

cut(V 1, · · · , Vk)

Solution: Spectral Graph Partition
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Minimum Cut
Weighted Cut
Laplacian matrix
Eigenvectors

2-partition problem: Partition a graph (not necessarily
bipartite) into two parts with minimum between-cluster
weights.
The above problem actually tries to find a minimum cut to
partition the graph into two parts.
Drawbacks: Always find unbalanced cut. Weight of cut is
directly proportional to the number of edges in the cut.
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Minimum Cut
Weighted Cut
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An effective heuristic:

WeightedCut(A,B) =
cut(A,B)
weight(A)

+
cut(A,B)
weight(B)

If weight(A) = |A|, then Ratio-cut ;
If weight(A) = cut(A,B) + within(A), then Normalized-cut.

cut(A, B) = w(3, 4) + w(2, 4) + w(2, 5)

weight(A) = w(1, 3) + w(1, 2) + w(2, 3) + w(3, 4) + w(2, 4) + w(2, 5)

weight(B) = w(4, 5) + w(3, 4) + w(2, 4) + w(2, 5)
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Solution
Finding the weighted cut boils down to solve a generalized
eigenvalue problem:

Lz = λWz

where L is Laplacian matrix and W is a diagonal weight matrix
and z denotes the cut.
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Laplacian Matrix for G(V,E):

Lij =


∑

k Eik, i = j
−Eij , i 6= jand there is an edge{i, j}
0 otherwise

Properties

L = D −M . M is the adjacency matrix, D is the diagonal
“degree” matrix with Dii =

∑
k Eik

L = IGIT
G where IG is the |V | × |E| incidence matrix.

For edge (i,j), IG is 0 except for the i-th and j-th entry which are√
Eij and −

√
Eij respectively.

L1̂ = 0

xT Lx =
∑

i,j∈E Eij(xi − xj)

(αx + β1̂)T L(αx + β1̂) = α2xT Lx.
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Let p be a vector to denote a cut:

So pi =
{

+1, i ∈ A
−1, i ∈ B

pT Lp =
∑

i,j∈E

Eij(pi − pj)2 = 4cut(A,B)

Introduce another vector q s.t.

qi =

 +
√

weight(B)
weight(A) , i ∈ A

−
√

weight(A)
weight(B) , i ∈ B

Then q =
wA + wB

2
√

wAwB
p +

wB − wA

2
√

wAwB
1̂

qT Lq =
(wA + wB)2

4wAwB
pT Lp (as L1̂ = 0)

=
(wA + wB)2

wAwB
· cut(A,B)
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Property of q

qT We = 0
qT Wq = weight(V ) = wA + wB

Then

qT Lq

qT Wq
=

(wA+wB)2

wAwB
· cut(A,B)

wA + wB

=
wA + wB

wAwB
· cut(A,B)

=
cut(A,B)
weight(A)

+
cut(A,B)
weight(B)

= WeightedCut(A,B)
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So, we need to find a vector q s.t.

min
q 6=0

qT Lq

qT Wq
, s.t. qT We = 0.

This is solved when q is the eigenvector corresponds to the 2nd
smallest eigenvalue λ2 of the generalized eigenvalue problem:

Lz = λWz

In nature, a relaxation to the discrete optimization problem of
finding minimum normalized cut.
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SVD Connection
Multipartition

L =
[

D1 −A
−AT D2

]
;W =

[
D1 0
0 D2

]
where D1(i, i) =

∑
j A(i, j) and D2(j, j) =

∑
i A(i, j).

Can we make the computation of Lz = λWz more efficiently by
taking the advantage of bipartite?
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[
D1 −A
−AT D2

] [
x
y

]
= λ

[
D1 0
0 D2

] [
x
y

]

Reformulation

D
1/2
1 x−D

−1/2
1 Ay = λD

1/2
1 x

−D
−1/2
2 AT x + D

1/2
2 y = λD

1/2
2 y

Let u = D
1/2
1 x and v = D

1/2
2 y,

D
−1/2
1 AD

−1/2
2 v = (1− λ)u

D
−1/2
2 AD

−1/2
1 u = (1− λ)v
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Instead of computing the 2nd smallest eigenvector, we can
compute the left and right singular vectors corresponding to the
2nd largest singular value of An:

Anv2 = σ2u2; AT
nu2 = σ2v2 where σ2 = 1− λ2

Then z2 =

[
D
−1/2
1 u2

D
−1/2
2 v2

]

Bipartition Algorithm:

1 Given A, form An = D
1/2
1 AD2−1/2. (note that D1 and D2

are both diagonal, easy to compute)
2 Compute z2 by SVD
3 Run k-means with k = 2 on the 1-dimentional z2 to obtain

the desired partitioning.
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Multipartition Algorithm:

For k clusters, compute l = dlog2ke singular vectors of An and
form l eigenvectors Z.
Then apply k-means to find k-way partitioning.

Experiment Result
Both Bipartition and multipartition algorithm works fine in
text domain even without removing the stop words
Comment: No comparison is performed. I think this work’s
major contribution is to introduce spectral clustering into
text domain and present a neat formulation for
co-clustering.
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Contributions
Questions

Contributions
1 Model document collection as a bipartite graph

(Extendable to almost all the data sets. Two components:
data points, Feature set)

2 Use spectral graph partitioning for Co-clustering
3 Reslove the problem using SVD
4 Beautiful Theory

Inderjit S. Dhillon Presenter: Lei Tang Co-clustering documents and words using Bipartite Spectral Graph Partitioning



Introduction
Review of Spectral Graph Partitioning

Bipartite Extension
Summary

Contributions
Questions

Questions
1 Connection to HITS? Docs as hubs, Words as authorities.

Can we get the same result as bipartitioning? In HITS,
ai = AT Aai−1 and hi = AAT hi−1 corresponding to the
largest eigenvector of AAT and AT A, respectively.

2 Extendable to Semi-supervised Learning? How to solve the
problem is some documents and words are already labeled?
(This is done?) Can we get good result by applying
DengYong Zhou’s semi-supervised method?

Any other question?

Thank you!
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