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Classical ML vs. Reality

+ Training data and Test data share the same
distribution (In classical Machine Learning)

< But that's not always the case in reality.
«®Survey data
«=Species habitat modeling based on data of only
one area

= Training and test data collected by different
experiments

«=Newswire articles with timestamps



Sample selection bias

« Standard setting: data (x,y) are drawn
independently from a distribution D

« If the selected samples is not a random samples
of D, then the samples are biased.

< Usually, training data are biased, but we want to
apply the classifier to unbiased samples.



Four cases of Bias(1)

+ Let s denote whether or not a sample is selected.
« P(s=1/x,y) = P(s=1) (not biased)

+ P(s=1/x,y) = P(s=1/x) (depending only on the
feature vector)

+ P(s=1/x,y) = P(s=1/y) (depending only on the class
label)

+ P(s=1/x,y) (depending on both x and y)



Four cases of Bias(2)

« P(s=1|x, y)= P(s=1|y): learning from imbalanced
data. Can alleviate the bias by changing the class
prior.

<« P(s=1|x,y) = P(s=1|x) imply P(y|x) remalin
unchanged. This is mostly studied.

« |f the bias depends on both x and y, lack
iInformation to analyze.



An intuitive Example
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P(s=1|x,y) = P(s=1|x) => s and y are independent.

So P(y|x, s=1) = P(y|x).

Does it really matter as P(y|x) remain unchanged??



Bias Analysis for Classifiers(1)

« Logistic Rearession

1
Ply=1lr.s =1) =

1+ exp(fo+ Fixi+ ... + GBnxy)

Any classifiers directly models P(y|x) won’t be
affected by bias

« Bayesian Classifier
P(xly,s =1)P(yls = 1)
P(z|s =1)

But for naive Bayesian classifier

Plxi|ly,s =1)...Plx,|ly, s =1)P(yls = 1)
Pxls=1) ’

= P(ylz.s = 1) = P(y|x)




Bias Analysis for Classifiers(2)

« Hard margin SVM: no bias effect.

Soft margin SVM: has bias effect as the cost of
misclassification might change.

« Decision Tree usually results in a different classifier if the

bias is presented

< In sum, most classifiers are still sensitive to the sample

bias.

< This Is In asymptotic analysis assuming the samples are

“enough”



Correcting Bias

+ Expected Risk:
R[Pr,0,l(z,y,0)] = Eq y)p: [l(2, 4, 0)]
% Suppose training set from Pr, test set from Pr’
R[Pr’, 0. 1(z,u.0)] = By yype [[(2,1,0)] = Egpyyope | oL (2, 4, 9)]

~Pr Pr(z.y)

— R[P]_“,_ 6'_, .,-3(:1?-, y)l(:z:_5 Y. (9)]? =0(x,y)

< S0 we minimize the empirical regularized risk:

,_ 1
RieslZ, 3, 1(z,y,0)] = — Z Bil(xy,u;,0) + AQ[6),
=1



X/
0‘0

X/
0‘0

Estimate the weights

The samples which are likely to appear in the test data will gain
more weight.

But how to estimate the weight of each sample?

P = Pr(x)Pr( Pr'(a
n?f(.r J‘a o n( ) T J|T) l = *3 *1 t) __f(__xJ
£ 7 1\.,-[ )I — L7 1,\.,-[ )l_[_f l\ylu{ f't:[:)

Brute force approach:

= Estimate the density of Pr(x) and Pr’(x), respectively,

= Then calculate the sample weight.
Not applicable as density estimation is more difficult than classification
given limited number of samples.

Existing works use simulation experiments in which both Pr(x) and
Pr’(x) are known (NOT REALISTIC)



Distribution Matching
+ The expectation in feature space:
1(Pr) = Eoopr@) [P(2)]
<« We have pPr=rprr < ||u(Pr)— wPr)|]|=0

+ Hence, the problem can be formulated as

mini;nize H,u.(Pr") —E, pu [B(x)D(x)] H

subject to F(x) > 0and B, _p,(.) [#(x)] =1

< Solution is;: Pr'(z) = g(z)Pr(x)



Empirical KMM optimization
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where ISy i=kl(x;, ;) and k; := 35 ) o k(25,2 %)

Therefore, it's equivalent to solve the QP problem:
1 — _

minimize —8 K3 —rx 3
3

< TNeE,

T
subject to 3; € [0, B] and ‘Z-ﬁi —m
i=1
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Experiments

+ A Toy Regression Example
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Simulation

« Select some UCI datasets to inject some sample selection
bias into training, then test on unbiased samples.
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Bias on Labels
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Unexplained

+ From theory, the importance sampling should be the best,
why KMM performs better?

«» Why kernel methods? Can we just do the matching using
input features?

« Can we just perform a logistic regression to estimate \beta
by treating test data as positive class, and training data as
negative. Then, \beta is the odds.



Some Related Problems

«» Semi-supervised Learning (Is it equivalent??)
« Multi-task Learning: assume P(y|x) to be
different. But sample selection bias(mostly)

assume P(y|x) to be the same. MTL requires
training data for each task.

+ |s it possible to discriminate features which
introduce the bias”? Or find invariant
dimensionalities?
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