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Gaussian Process, (kriging in geostatistics)

Autoregressive moving average model, Kalman filters, and radial basis
function networks can be viewed as forms of Gaussian process models.
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Linear regression revisited

y(x) = wTφ(x)

p(w) = N (w |0, α−1I)

y = Φw

E [y] = ΦE [w]

cov [y] = E [yyT ] = ΦE [wwT ]ΦT =
1

α
ΦΦT = K

where K is Gram matrix with elements

Knm = k(xn, xm) =
1

α
φ(xn)

Tφ(xm)
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Gaussian Process

A Gaussian process is defined as a probability distribution over
functions y(x) suth that the set of values of y(x) evaluated at an
arbitrary set of points x1, · · · , xN jointly have a Gaussian distribution.

Gaussian random field : when the input vector x is two-dimentional.

Stochastic process: y(x) is specified by giving the joint probability
distirubtion for any finite set of values y(x1), · · · , y(xN) in a
consistent manner.
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GP Connection to Kernel

For Gaussian stochstic process, the joint distribution over N variables
y1, · · · , yN is specified completely by the second-order statistics.

For most applications, we have no prior knowledge, so by
symmetry(also for sparsity) we take the mean of y(x) to be zero.

Then the Gaussian process is deteremined by the covariance of y(x)
which is specified by the kernel function:

E [y(xn), y(xm)] = k(xn, xm)
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Two Examples of GP

Specificy the covaraince (kernel) directly.

1 Gaussian Kernel: k(x , x ′) = exp(−||x − x ′||2/2σ2)

2 Exponential Kernel: k(x , x ′) = exp(−θ|x − x ′|) (correpsonds to the
Ornstein-Uhlenbeck process original introduced for Brownian motion)
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GP for Regression with Random Noise

If the noise on the observed target values are considered:

p(tn|yn) = N (tn|yn, β
−1)

p(t|y) = N (t|y, β−1IN)

p(y) = N (y|0,K)

p(t) =

∫
p(t|y)p(y)dy = N (t|0,C)

where C (xn, xm) = k(xn, xm) + β−1δnm. Covraince simply add.

Hint: matrix inverse lemma

[B−1 + CD−1CT ]−1 = B − BC (D + CTBC )−1CTB
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Commonly Used Kernel for Regression

k(xn, xm) = θ0exp

{
−θ1

2
||xn − xm||2

}
+ θ2 + θ3x

T
n xm
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GP for Prediction

p(tN+1) = N (tN+1|0,CN+1)

CN+1 =

(
CN k
kT c

)

m(xN+1) = kTC−1
N t

σ2(xN+1) = c − kTC−1
N k

If we rewrite m(xN+1) =
∑N

n=1 ank(xn, xN+1), and define a kernel
function depending only on the distance ||xn − xm||, we obtain an
expansion in radial basis function.
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Computation time for GP regression

1 Training:

GP: inversion of a N × N matrix O(N3) + O(N2).
Linear basis function model: inversion of a M ×M matrix O(M3) +
O(M2).

2 Prediction:

GP: O(N).
Linear basis function: O(M).

Advantages of GP

If the number of basis functions is larger than the number of data
points, GP is computionally more efficient.

Donot need to construct the basis function.

Can learn the hyperparameters (maximum likelihood estimation)
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Automatic relevance determination

Previous example doesn’t consider the relevave importance of each
dimension.

Define a kernel as

k(x , x ′) = θ0exp

{
−1

2

2∑
i=1

γi (xi − x ′i )
2

}

Atuomatically learn the hyperparameters resulting ARD which
automatically determine the relative importance of each basis.
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GP for Classification

Similar to logistic/probit regression, using a nonlinear activation
function to transform (−∞,+∞) into probability interval (0, 1).

Assume latent variable a and the target output given latent variables
are determined:

p(t|a) = σ(a)t(1− σ(a))1−t

Latent variables a follows the Gaussian Process

For prediction,

p(tN+1 = 1|tN) =

∫
p(tN+1 = 1|aN+1)p(aN+1|tN)daN+1

Unfortunately, this is analytically intractable and may be
approximated using sampling methods or analytical approximation.
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GP for classification prediction

Gaussin approximation to the posterior distribution over aN+1.

p(aN+1|tN) =

∫
p(aN+1|aN)p(aN |tN)daN

p(aN+1|aN) = N (aN+1|kTC−1
N aN , c − kTC−1

N k)

Need to estimate p(aN |tN): use Gaussian Approximation

The shape of single-mode distribution is close to Gaussian
distribution.

Increasing the number of data points falling in a fixed region of x
space, then the corresponding uncertainty in the function a(x) will
decrease, asymptotically leading to a Gaussian.
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Different approach to obtain a Gaussian approximation

1 variational inference

2 expectation propagation

3 Laplace approximation
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Laplace Approximation

p(aN) is given by a zero-mean Gaussian process with covariance
matrix CN :

p(aN) = N (0,CN)

p(tN |aN) =
N∏

n=1

σ(an)
tn(1− σ(an))

1−tn

N∑
n=1

eantnσ(−an)

where wN is a diagonal matrix with elements σ(an)(1− σ(an)).

The hessian matrix A = −∇∇Ψ(aN) is positive definite. So the
posterior is log convex and has a single model that is the global
maximum.
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Laplace Approximation (2)

How to find the mode

Use Newton method,

anew
N = aold

N −∇∇Ψ(aN)−1∇Ψ(aN)

= aold
N + (WN + C−1

N )−1(tN − σN − C−1
N aN)

= CN(I + WNCN)−1{tN − σN + WNaN}

At the mode,
a∗N = CN(tN − σN)

How to get the Hessian

H = −∇∇Ψ(aN) = WN + C−1
N

q(aN) = N (aN |a∗N ,H−1) (1)
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Laplace Approximation for Prediction(1)

p(aN+1|tN) ≈
∫

p(aN+1|aN)q(aN |tN)daN

E [aN+1|tN ] = kT (tN − σN)

var [aN+1|tN ] = c − kTC−1
N k + kTC−1

N (WN + C−1
N )−1C−1

N k

= c − kTC−1
N k + kT (CNWNCN + CN)−1)k

= c − kTC−1
N k + kT (C−1

N − C−1
N CN(W−1

N + CN)−1CNC−1
N )k

= c − kTC−1
N k + kT (C−1

N − (W−1
N + CN)−1)k

= c − kT (W−1
N + CN)−1k
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Laplace Approximation for Prediction(2)

Recall that

p(aN+1|tN) =

∫
p(aN+1|aN)p(aN |tN)daN

=

∫
σ(aN+1)p(aN+1|tN)daN+1

Use a probit function to approximate the sigmoid function:

σ(a) ≈ Φ(λa) where λ2 =
π

8∫
Φ(λa)N (a|µ, σ2)da = Φ

(
µ

(λ−2 + σ2)
1
2

)
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Connection to Neural Network

The functions represented by a neural network is governed by the
number of hidden units (M). Hence, the number of hidden units is
limited based on the size of training data to avoid over-fitting. In a
Bayesian perspective, it makes no sense to limit the number of
parameters according to the size of training data.

For a broad class of prior distributions over w , the distribution of
functions generated by a neural network will tend to a Gaussian
process in the limit M →∞.

In the limit, the output variables of the neural network are
independent. But in neural network, they can still borrow strength
from each other.
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