Community Detection Iin Social
Networks
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Properties of Complex Network
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Power Law

Regular Small-world




Why Community Detection?

= Communities In a citation network might represent
related papers on a single topic;

= Communities on the web might represent pages of
related topics;

* Community can be considered as a summary of
the whole network thus easy to visualize and
- frﬂ'nderstand

i Sometimes, community can reveal the properties
Wlthqut releasmg the individual privacy information.
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Community Detection,
Reinventing the wheel?
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Community Detection = Clustering?

= As | understand, community detection Is
essentially clustering.

= But why so many works on Community
Detection? (in physical review, KDD, WWW)

- The network data pose challenges to

e assical clustering method.
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http://www.cscs.umich.edu/~crshalizi/notabene/community-discovery.html
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Difference

= Clustering works on the distance or similarity matrix (k-
means, hierarchical clustering, spectral clustering)

= Network data tends to be “discrete”, leading to algorithms
using the graph property directly (k-cligue, quasi-cligue,
vertex-betweenness, edge-betweeness etc.)

» Real-world network is large scale! Sometimes, even n”2 in
unbearable for efficiency or space (local/distributed
clustering, network approximation, sampling method)
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Outline

= Two recent community detection methods

= Clustering based on shortest-path
betweenness

= Clustering based on network modularity
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Basic |ldea

= A simple divisive strategy: s
= Repeat

1. Find out one “inter-community” edge

2. Remove the edge

3. Check if there’s any disconnected components (which
~___corresponds to a community)




How to measure “inter-community”

= |f two communities are joined by a few inter-community
edges, then all the paths from one community to another

must pass the edges.
= Various measures:

» Edge Betweenness: find the shortest paths

between all pairs of nodes and count how
> {fmany run along each edge.
- Random Walk betweenness.

. C rent-flow betweenness
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Shortest-path betweenness

= Computation could be expensive: calculating the shortest
path between one pair is O(m), and there are O(n”*2) pairs.
= Could be optimized to O(mn)

= Simple case: only one shortest path

5 When there is only one single path between the
(a) - Source S and other vertex, then those paths form
1/ N4 a tree.
1/ / 7 Bottom-up: start from the leaves, assign edges to 1.
C Count of parent edge = sum (count of children edge)+1
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Multiple shortest path

= First compute the number of paths from source to..-'.b,*e'r
vertex

= Then assign a proper weight for the path counts

= sum of the betweenness =.number of reachable
vertices.
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Calculate #shortest path

1.Initial distance

2. Every vertex i adjacent to s is given distance d; =
ds +1 =1, and weight w; = w, = 1.

3. For each vertex j adjacent to one of those vertices i
we do one of three things:

(a) If j has not yet been assigned a distance, it
1s assigned distance d; = d; 4 1 and weight
'U_a‘j = ;.

(b) If j has already been assigned a distance and
d; = d; + 1, then the vertex’s weight is in-
creased by w;, that is w; «— w; + w;.

(¢) If j has already been assigned a distance and
d; < d; +1, we do nothing,.

4. Repeat from step 3 until no vertices remain that
have assigned distances but whose neighbors do not
have assigned distances.
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1. Find every “leat” vertex t, i.e., a vertex such that
no paths from s to other vertices go though £.

2. For each vertex i neighboring t assign a score to the
edge from t to 7 of

3. Now, starting with the edges that are farthest from
the source vertex s—lower down in a diagram such
as Fig. 4b—work up towards s. To the edge from
vertex i to vertex j, with j being farther from s
than ¢, assign a score that is 1 plus the sum of
the scores on the neighboring edges immediately
helow it (i.e., those with which it shares a common
vertex), all multiplied by w; /w;.

4. Repeat from step 3 until vertex s is reached.




Time Complexity

= O(mn) In each iteration.

= Could be accelerated by noting that only the
nodes in the connected component would be
affected.

* Some other techniques developed: sampling
4 strategy to approximate the betweenness; use
r"‘” specific network index for speed.
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Modularity

= Spectral clustering essentially tries to minimize the number
edges between groups.

= Modularity consider the number edges which is smaller than
expected.

() = (number of edges within communities)

— (expected number of such edges).
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= Glven a network of m edges, for two nodes
with degree k;, k;, what is the expected
edges between these two nodes?
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~ Modularity can be used to determine the
~ humber of clusters, why not maximize it

sl i
T R e

i __.-1_._ | SUETE
T — = =gt =g e
) PSS ) S—— | T——] ——_—_—.—— L L e e . T |--L--|—aa-i.!—.l-i.L — S—

AR SONE MRS GRS SR
= S

I__l._l.ll
Far— b




e -.r = r —-r - - I - - . P - _ - - ap -
L .--.JI... il - Tl — - —— - e il = .L e = & b _— B .l

| - il —
T T P v g & 5 a i ¥ e " g Ay ro
_._-L_.._-'l___--i.__l- ¥ D A SO PR EeE S .__lE__-L__.l-___u T TEIIES EETNER IR TR e

Relaxation
1

Q = 7= 2_[Ay - Byl(sis; +1)
0(gi.g) = %(Si.ﬂj +1). . : “

=TI Z |Aij — Fij|sis;,

3

Eigen Value
Problem!

T
5 = Eé:l Uy 1

Modularity
Matrix

L

Beta, is the eigen value of the
Eigen vector u, of modularity matrix B

W




Properties of Modularity Matrix
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= (1,1,...1) is an eigen vector with zero eigen value.

= Different from graph Laplacian, the eigen value of
modularity matrix could be +, O or -

- What if the maximum eigen value is zero?

f’gaEssentlally, it hints that there’s no strong
- hc:ommunlty pattern. Not necessary to split the
network, WhICh IS a nice property.
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Extensions

= Divisive clustering
= K - partitioning...




Comments

= | thought spectral clustering is the end of clustering. But
here a new measure Modularity is proposed and found to
be working very well, which confirms that “research is
endless”, or “no last bug”.

= Since Graph Laplacian and Modularity matrix both boils
down to a eigen value problem, is there any innate
connection between these two measures?

~ How could it work if we apply it directly to some classic
data representation?

- Extend modularity to relational data could be a promising
- direction.

m "T'hqre could be more opportunities than “wheels” in social
computing.

: Scalabllltyusreally a big issue.
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