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ABSTRACT

The study of collective behavior is to understand how in-
dividuals behave in a social network environment. Oceans
of data generated by social media like Facebook, Twitter,
Flickr and YouTube present opportunities and challenges to
studying collective behavior in a large scale. In this work,
we aim to learn to predict collective behavior in social me-
dia. In particular, given information about some individu-
als, how can we infer the behavior of unobserved individ-
uals in the same network? A social-dimension based ap-
proach is adopted to address the heterogeneity of connec-
tions presented in social media. However, the networks in
social media are normally of colossal size, involving hun-
dreds of thousands or even millions of actors. The scale
of networks entails scalable learning of models for collective
behavior prediction. To address the scalability issue, we
propose an edge-centric clustering scheme to extract sparse
social dimensions. With sparse social dimensions, the social-
dimension based approach can efficiently handle networks of
millions of actors while demonstrating comparable predic-
tion performance as other non-scalable methods.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database applications—
Data Mining ; J.4 [Social and Behavioral Sciences]: So-
ciology

General Terms

Algorithm, Experimentation

Keywords

Social Dimensions, Behavior Prediction, Social Media, Re-
lational Learning, Edge-Centric Clustering

1. INTRODUCTION
Social media such as Facebook, MySpace, Twitter, Blog-

Catalog, Digg, YouTube and Flickr, facilitate people of all
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walks of life to express their thoughts, voice their opinions,
and connect to each other anytime and anywhere. For in-
stance, popular content-sharing sites like Del.icio.us, Flickr,
and YouTube allow users to upload, tag and comment dif-
ferent types of contents (bookmarks, photos, videos). Users
registered at these sites can also become friends, a fan or
follower of others. The prolific and expanded use of social
media has turn online interactions into a vital part of human
experience. The election of Barack Obama as the President
of United States was partially attributed to his smart Inter-
net strategy and access to millions of younger voters through
the new social media, such as Facebook. As reported in the
New York Times, in response to recent Israeli air strikes in
Gaza, young Egyptians mobilized not only in the streets of
Cairo, but also through the pages of Facebook.

Owning to social media, rich human interaction informa-
tion is available. It enables the study of collective behavior
in a much larger scale, involving hundreds of thousands or
millions of actors. It is gaining increasing attentions across
various disciplines including sociology, behavioral science,
anthropology, epidemics, economics and marketing business,
to name a few. In this work, we study how networks in social
media can help predict some sorts of human behavior and
individual preference. In particular, given the observation of
some individuals’ behavior or preference in a network, how
to infer the behavior or preference of other individuals in the
same social network? This can help understand the behav-
ior patterns presented in social media, as well as other tasks
like social networking advertising and recommendation.

Typically in social media, the connections of the same
network are not homogeneous. Different relations are inter-
twined with different connections. For example, one user
can connect to his friends, family, college classmates or col-
leagues. However, this relation type information is not read-
ily available in reality. This heterogeneity of connections
limits the effectiveness of a commonly used technique —
collective inference for network classification. Recently, a
framework based on social dimensions [18] is proposed to ad-
dress this heterogeneity. This framework suggests extracting
social dimensions based on network connectivity to capture
the potential affiliations of actors. Based on the extracted
dimensions, traditional data mining can be accomplished. In
the initial study, modularity maximization [15] is exploited
to extract social dimensions. The superiority of this frame-
work over other representative relational learning methods
is empirically verified on some social media data [18].

However, the instantiation of the framework with mod-
ularity maximization for social dimension extraction is not
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scalable enough to handle networks of colossal size, as it in-
volves a large-scale eigenvector problem to solve and the cor-
responding extracted social dimensions are dense. In social
media, millions of actors in a network are the norm. With
this huge number of actors, the dimensions cannot even be
held in memory, causing serious problem about the scala-
bility. To alleviate the problem, social dimensions of sparse
representation are preferred. In this work, we propose an ef-
fective edge-centric approach to extract sparse social dimen-
sions. We prove that the sparsity of the social dimensions
following our proposed approach is guaranteed. Extensive
experiments are conducted using social media data. The
framework based on sparse social dimensions, without sac-
rificing the prediction performance, is capable of handling
real-world networks of millions of actors in an efficient way.

2. COLLECTIVE BEHAVIOR LEARNING
The recent boom of social media enables the study of col-

lective behavior in a large scale. Here, behavior can include
a broad range of actions: join a group, connect to a person,
click on some ad, become interested in certain topics, date
with people of certain type, etc. When people are exposed in
a social network environment, their behaviors are not inde-
pendent [6, 22]. That is, their behaviors can be influenced
by the behaviors of their friends. This naturally leads to
behavior correlation between connected users.

This behavior correlation can also be explained by ho-
mophily. Homophily [12] is a term coined in 1950s to ex-
plain our tendency to link up with one another in ways that
confirm rather than test our core beliefs. Essentially, we are
more likely to connect to others sharing certain similarity
with us. This phenomenon has been observed not only in
the real world, but also in online systems [4]. Homophily
leads to behavior correlation between connected friends. In
other words, friends in a social network tend to behave sim-
ilarly. Take marketing as an example, if our friends buy
something, there’s better-than-average chance we’ll buy it
too.

In this work, we attempt to utilize the behavior correla-
tion presented in a social network to predict the collective
behavior in social media. Given a network with behavior
information of some actors, how can we infer the behavior
outcome of the remaining ones within the same network?
Here, we assume the studied behavior of one actor can be
described with K class labels {c1, · · · , cK}. For each label,
ci can be 0 or 1. For instance, one user might join multi-
ple groups of interests, so 1 denotes the user subscribes to
one group and 0 otherwise. Likewise, a user can be inter-
ested in several topics simultaneously or click on multiple
types of ads. One special case is K = 1. That is, the stud-
ied behavior can be described by a single label with 1 and
0 denoting corresponding meanings in its specific context,
like whether or not one user voted for Barack Obama in the
presidential election.

The problem we study can be described formally as fol-
lows:

Suppose there are K class labels Y = {c1, · · · , cK}.
Given network A = (V, E, Y ) where V is the ver-
tex set, E is the edge set and Yi ⊆ Y are the class
labels of a vertex vi ∈ V , and given known val-
ues of Yi for some subsets of vertices V L, how to
infer the values of Yi (or a probability estimation

Figure 1: Contacts of One User in Facebook

Table 1: Social Dimension Representation

Actors Affiliation-1 Affiliation-2 · · · Affiliation-k
1 0 1 · · · 0.8
2 0.5 0.3 · · · 0
...

...
...

. . .
...

score over each label) for the remaining vertices
V U = V − V L?

Note that this problem shares the same spirit as within-
network classification [11]. It can also be considered as a
special case of semi-supervised learning [23] or relational
learning [5] when objects are connected within a network.
Some of the methods there, if applied directly to social me-
dia, yield limited success [18], because connections in social
media are pretty noise and heterogeneous.

In the next section, we will discuss the connection hetero-
geneity in social media, briefly review the concept of social
dimension, and anatomize the scalability limitations of the
earlier model proposed in [18], which motivates us to develop
this work.

3. SOCIAL DIMENSIONS
Connections in social media are not homogeneous. People

can connect to their family, colleagues, college classmates,
or some buddies met online. Some of these relations are
helpful to determine the targeted behavior (labels) but not
necessarily always so true. For instance, Figure 1 shows the
contacts of the first author on Facebook. The densely-knit
group on the right side are mostly his college classmates,
while the upper left corner shows his connections at his grad-
uate school. Meanwhile, at the bottom left are some of his
high-school friends. While it seems reasonable to infer that
his college classmates and friends in graduate school are very
likely to be interested in IT gadgets based on the fact that
the user is a fan of IT gadget (as most of them are majoring
in computer science), it does not make sense to propagate
this preference to his high-school friends. In a nutshell, peo-
ple are involved in different affiliations and connections are
emergent results of those affiliations. These affiliations have
to be differentiated for behavior prediction.

However, the affiliation information is not readily avail-
able in social media. Direct application of collective infer-
ence[11] or label propagation [24] treats the connections in
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a social network homogeneously. This is especially prob-
lematic when the connections in the network are noisy. To
address the heterogeneity presented in connections, we have
proposed a framework (SocDim) [18] for collective behavior
learning.

The framework SocDim is composed of two steps: 1) so-
cial dimension extraction, and 2) discriminative learning. In
the first step, latent social dimensions are extracted based on
network topology to capture the potential affiliations of ac-
tors. These extracted social dimensions represent how each
actor is involved in diverse affiliations. One example of the
social dimension representation is shown in Table 1. The
entries show the degree of one user involving in an affili-
ation. These social dimensions can be treated as features
of actors for the subsequent discriminative learning. Since
the network is converted into features, typical classifier such
as support vector machine and logistic regression can be
employed. The discriminative learning procedure will de-
termine which latent social dimension correlates with the
targeted behavior and assign proper weights.

Now let’s re-examine the contacts network in Figure 1.
One key observation is that when actors are belonging to the
same affiliations, they tend to connect to each other as well.
It is reasonable to expect people of the same department to
interact with each other more frequently. Hence, to infer
the latent affiliations, we need to find out a group of people
who interact with each other more frequently than random.
This boils down to a classical community detection problem.
Since each actor can involve in more than one affiliations, a
soft clustering scheme is preferred.

In the instantiation of the framework SocDim, modularity
maximization [15] is adopted to extract social dimensions.
The social dimensions correspond to the top eigenvectors of
a modularity matrix. It has been empirically shown that
this framework outperforms other representative relational
learning methods in social media. However, there are several
concerns about the scalability of SocDim with modularity
maximization:

• The social dimensions extracted according to modu-
larity maximization are dense. Suppose there are 1
million actors in a network and 1, 000 dimensions1 are
extracted. Suppose standard double precision num-
bers are used, holding the full matrix alone requires
1M × 1K × 8 = 8G memory. This large-size dense
matrix poses thorny challenges for the extraction of
social dimensions as well as the subsequent discrimi-
native learning.

• The modularity maximization requires the computa-
tion of the top eigenvectors of a modularity matrix
which is of size n × n where n is the number of actors
in a network. When the network scales to millions of
actors, the eigenvector computation becomes a daunt-
ing task.

• Networks in social media tend to evolve, with new
members joining, and new connections occurring be-
tween existing members each day. This dynamic na-
ture of networks entails efficient update of the model
for collective behavior prediction. Efficient online up-

1Given a mega-scale network, it is not surprising that there
are numerous affiliations involved.

date of eigenvectors with expanding matrices remains
a challenge.

Consequently, it is imperative to develop scalable meth-
ods that can handle large-scale networks efficiently without
extensive memory requirement. In the next section, we elu-
cidate an edge-centric clustering scheme to extract sparse
social dimensions. With the scheme, we can update the
social dimensions efficiently when new nodes or new edges
arrive in a network.

4. ALGORITHM—EDGECLUSTER
In this section, we first show one toy example to illustrate

the intuition of our proposed edge-centric clustering scheme
EdgeCluster, and then present one feasible solution to handle
large-scale networks.

4.1 Edge-Centric View
As mentioned earlier, the social dimensions extracted based

on modularity maximization are the top eigenvectors of a
modularity matrix. Though the network is sparse, the so-
cial dimensions become dense, begging for abundant mem-
ory space. Let’s look at the toy network in Figure 2. The
column of modularity maximization in Table 2 shows the
top eigenvector of the modularity matrix. Clearly, none of
the entries is zero. This becomes a serious problem when
the network expands into millions of actors and a reasonable
large number of social dimensions need to be extracted. The
eigenvector computation is impractical in this case. Hence,
it is essential to develop some approach such that the ex-
tracted social dimensions are sparse.

The social dimensions according to modularity maximiza-
tion or other soft clustering scheme tend to assign a non-zero
score for each actor with respect to each affiliation. How-
ever, it seems reasonable that the number of affiliations one
user can participate in is upperbounded by the number of
connections. Consider one extreme case that an actor has
only one connection. It is expected that he is probably active
in only one affiliation. It is not necessary to assign a non-
zero score for each affiliation. Assuming each connection
represents one dominant affiliation, we expect the number
of affiliations of one actor is no more than his connections.

Instead of directly clustering the nodes of a network into
some communities, we can take an edge-centric view, i.e.,
partitioning the edges into disjoint sets such that each set
represents one latent affiliation. For instance, we can treat
each edge in the toy network in Figure 2 as one instance,
and the nodes that define edges as features. This results in
a typical feature-based data format as in Figure 3. Based on
the features (connected nodes) of each edge, we can cluster
the edges into two sets as in Figure 4, where the dashed edges
represent one affiliation, and the remaining edges denote
another affiliation. One actor is considered associated with
one affiliation as long as any of his connections is assigned to
that affiliation. Hence, the disjoint edge clusters in Figure 4
can be converted into the social dimensions as the last two
columns for edge-centric clustering in Table 2. Actor 1 is
involved in both affiliations under this EdgeCluster scheme.

In summary, to extract social dimensions, we cluster edges
rather than nodes in a network into disjoint sets. To achieve
this, k-means clustering algorithm can be applied. The edges
of those actors involving in multiple affiliations (e.g., actor 1
in the toy network) are likely to be separated into different
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Figure 2: A Toy Example

Edge
Features

1 2 3 4 5 6 7 8 9
(1, 3) 1 0 1 0 0 0 0 0 0
(1, 4) 1 0 0 1 0 0 0 0 0
(2, 3) 0 1 1 0 0 0 0 0 0

... · · · · · · · · ·

Figure 3: Edge-Centric View Figure 4: Edge Clusters

Actors Modularity Edge-Centric
Maximization Clustering

1 -0.1185 1 1
2 -0.4043 1 0
3 -0.4473 1 0
4 -0.4473 1 0
5 0.3093 0 1
6 0.2628 0 1
7 0.1690 0 1
8 0.3241 0 1
9 0.3522 0 1

Table 2: Social Dimension(s) of the Toy Example

clusters. Even though the partition of edge-centric view is
disjoint, the affiliations in the node-centric view can overlap.
Each actor can be involved in multiple affiliations.

In addition, the social dimensions based on edge-centric
clustering are guaranteed to be sparse. This is because the
affiliations of one actor are no more than the connections
he has. Suppose we have a network with m edges, n nodes
and k social dimensions are extracted. Then each node vi

has no more than min(di, k) non-zero entries in its social
dimensions, where di is the degree of node vi. We have the
following theorem.

Theorem 1. Suppose k social dimensions are extracted
from a network with m edges and n nodes. The density
(proportion of nonzero entries) of the social dimensions ex-
tracted based on edge-centric clustering is bounded by the
following formula:

density ≤

Pn

i=1
min(di, k)

nk

=

P

{i|di≤k} di +
P

{i|di>k} k

nk
(1)

Moreover, for networks in social media where the node degree
follows a power law distribution, the upper bound in Eq. (1)
can be approximated as follows:

α − 1

α − 2

1

k
−

„

α − 1

α − 2
− 1

«

k−α+1 (2)

where α > 2 is the exponent of the power law distribution.

Please refer to the appendix for the detailed proof. To give
a concrete example, we examine a YouTube network2 with
more than 1 million actors and verify the upperbound of the
density. The YouTube network has 1, 128, 499 nodes and
2, 990, 443 edges. Suppose we want to extract 1, 000 dimen-
sions from the network. Since 232 nodes have degree larger

2More details are in the experiment part.
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Figure 5: Density Upperbound of Social Dimensions

than 1000, the density is upperbounded by (5, 472, 909 +
232×1, 000)/(1, 128, 499×1, 000) = 0.51% following Eq.(1).
The node distribution in the network follows a power law
with the exponent α = 2.14 based on maximum likelihood
estimation [14]. Thus, the approximate upperbound in Eq.(2)
for this specific case is 0.54%.

Note that the upperbound in Eq. (1) is network specific
whereas Eq.(2) gives an approximate upperbound for a fam-
ily of networks. It is observed that most power law distri-
butions occurring in nature have 2 ≤ α ≤ 3 [14]. Hence, the
bound in Eq. (2) is valid most of the time. Figure 5 shows
the function in terms of α and k. Note that when k is huge
(close to 10,000), the social dimensions becomes extremely
sparse (< 10−3). In reality, the extracted social dimensions
is typically even more sparse than this upperbound as shown
in later experiments. Therefore, with edge-centric cluster-
ing, the extracted social dimensions are sparse, alleviating
the memory demand and facilitating efficient discriminative
learning in the second stage.

4.2 K-means Variant
As mentioned above, edge-centric clustering essentially

treats each edge as one data instance with its ending nodes
being features. Then a typical k-means clustering algorithm
can be applied to find out disjoint partitions.

One concern with this scheme is that the total number of
edges might be too huge. Owning to the power law distribu-
tion of node degrees presented in social networks, the total
number of edges is normally linear, rather than square, with
respect to the number of nodes in the network. That is,
m = O(n). This can be verified via the properties of power
law distribution. Suppose a network with n nodes follows a
power law distribution as

p(x) = Cx−α, x ≥ xmin > 0

where α is the exponent and C is a normalization constant.
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Input: data instances {xi|1 ≤ i ≤ m}
number of clusters k

Output: {idxi}
1. construct a mapping from features to instances
2. initialize the centroid of cluster {Cj |1 ≤ j ≤ k}
3. repeat

4. Reset {MaxSimi}, {idxi}
5. for j=1:k
6. identify relevant instances Sj to centroid Cj

7. for i in Sj

8. compute sim(i, Cj) of instance i and Cj

9. if sim(i, Cj) > MaxSimi

10. MaxSimi = sim(i, Cj)
11. idxi = j;
12. for i=1:m
13. update centroid Cidxi

14. until no change in idx or change of objective < ǫ

Figure 6: Algorithm for Scalable K-means Variant

Then the expected number of degree for each node is [14]:

E[x] =
α − 1

α − 2
xmin

where xmin is the minimum nodal degree in a network. In
reality, we normally deal with nodes with at least one con-
nection, so xmin ≥ 1. The α of a real-world network fol-
lowing power law is normally between 2 and 3 as mentioned
in [14]. Consider a network in which all the nodes have
non-zero degrees, the expected number of edges is

E[m] =
α − 1

α − 2
xmin · n/2

Unless α is very close to 2, in which case the expectation
diverges, the expected number of edges in a network is linear
to the total number of nodes in the network.

Still, millions of edges are the norm in a large-scale social
network. Direct application of some existing k-means im-
plementation cannot handle the problem. E.g., the k-means
code provided in Matlab package requires the computation
of the similarity matrix between all pairs of data instances,
which would exhaust the memory of normal PCs in sec-
onds. Therefore, implementation with an online fashion is
preferred.

On the other hand, the edge data is quite sparse and struc-
tured. As each edge connects two nodes in the network, the
corresponding data instance has exactly only two non-zero
features as shown in Figure 3. This sparsity can help acceler-
ate the clustering process if exploited wisely. We conjecture
that the centroids of k-means should also be feature-sparse.
Often, only a small portion of the data instances share fea-
tures with the centroid. Thus, we only need to compute
the similarity of the centroids with their relevant instances.
In order to efficiently identify the instances relevant to one
centroid, we build a mapping from the features (nodes) to
instances (edges) beforehand. Once we have the mapping,
we can easily identify the relevant instances by checking the
non-zero features of the centroid.

By taking care of the two concerns above, we thus have a
k-means variant as in Figure 6 to handle clustering of many
edges. We only keep a vector of MaxSim to represent the
maximum similarity between one data instance with a cen-
troid. In each iteration, we first identify the set of relevant

Input: network data, labels of some nodes
Output: labels of unlabeled nodes
1. convert network into edge-centric view as in Figure 3
2. perform clustering on edges via algorithm in Figure 6
3. construct social dimensions based on edge clustering
4. build classifier based on labeled nodes’ social dimensions
5. use the classifier to predict the labels of unlabeled ones

based on their social dimensions

Figure 7: Scalable Learning of Collective Behavior

instances to a centroid, and then compute the similarities
of these instances with the centroid. This avoids the itera-
tion over each instance and each centroid, which would cost
O(mk) otherwise. Note that the centroid contains one fea-
ture (node) if and only if any edge of that node is assigned
to the cluster. In effect, most data instances (edge) are as-
sociated with few (much less than k) centroids. By taking
advantage of the feature-instance mapping, the cluster as-
signment for all instances (lines 5-11 in Figure 6) can be
fulfilled in O(m) time. To compute the new centroid (lines
12-13), it costs O(m) time as well. Hence, each iteration
costs O(m) time only. Moreover, the algorithm only requires
the feature-instance mapping and network data to reside in
main memory, which costs O(m + n) space. Thus, as long
as the network data can be held in memory, this clustering
algorithm is able to partition the edges into disjoint sets.
Later as we show, even for a network with millions of ac-
tors, this clustering can be finished in tens of minutes while
modularity maximization becomes impractical.

As a simple k-means is adopted to extract social dimen-
sions, it is easy to update the social dimensions if the net-
work changes. If a new member joins a network and a new
connection emerges, we can simply assign the new edge to
the corresponding clusters. The update of centroids with
new arrival of connections is also straightforward. This
k-means scheme is especially applicable for dynamic large-
scale networks.

In summary, to learn a model for collective behavior, we
take the edge-centric view of the network data and partition
the edges into disjoint sets. Based on the edge clustering,
social dimensions can be constructed. Then, discriminative
learning and prediction can be accomplished by considering
these social dimensions as features. The detailed algorithm
is summarized in Figure 7.

5. EXPERIMENT SETUP
In this section, we present the data collected from social

media for evaluation, and the baseline methods for compar-
ison.

5.1 Social Media Data
Two benchmark data sets in [18] are used to examine our

proposed model for collective behavior learning. The first
data set is acquired from BlogCatalog3, the second data set
is extracted from a popular photo sharing site Flickr4. Con-
cerning the behavior, following [18], we study whether a user
joins a group of interest. Since the BlogCatalog data does
not have this group information, we use the blogger’s topic

3http://www.blogcatalog.com/
4http://www.flickr.com/
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Table 3: Statistics of Social Media Data
Data BlogCatalog Flickr YouTube

Categories 39 195 47
Nodes (n) 10, 312 80, 513 1, 138, 499
Links (m) 333, 983 5, 899, 882 2, 990, 443

Network Density 6.3× 10−3 1.8× 10−3 4.6× 10−6

Maximum Degree 3, 992 5, 706 28, 754
Average Degree 65 146 5

interests as the behavior labels. Both data sets are publicly
available from the first author’s homepage5.

To examine the scalability, we also include a mega-scale
network6 crawled from YouTube7. We remove those nodes
without connections and select the groups with at least 500
members. Some of the detailed statistics of the data set can
be found in Table 3.

5.2 Baseline Methods
The edge-centric clustering (or EdgeCluster) is used to

extract social dimensions on all the data sets. We adopt
cosine similarity while performing the clustering. Based on
cross validation, the dimensionality is set to 5000, 10000, and
1000 for BlogCatalog, Flickr, and YouTube, respectively. A
linear SVM classifier is exploited for discriminative learning.

In particular, we compare our proposed sparse social di-
mensions with the social dimensions extracted according to
modularity maximization (denoted as ModMax) [18]. We
study how the sparsity in social dimensions affects the pre-
diction performance as well as the scalability. For complete-
ness, we also include the performance of some representa-
tive methods: wvRN , NodeCluster and MAJORITY. We
briefly discuss these methods next.

Weighted-Vote Relational Neighbor Classifier (wvRN) [10]
has been shown to work reasonably well for classification
with network data and is recommended as a baseline method
for comparison [11]. It works like a lazy learner. No model is
constructed for training. In prediction, the relational classi-
fier estimates the class membership as the weighted mean of
its neighbors. This classifier is closely related to the Gaus-
sian field [24] in semi-supervised learning [11].

Note that social dimensions allow one actor to be involved
in multiple affiliations. As a proof of concept, we also ex-
amine the case when each actor is associated with only one
affiliation. A similar idea has been adopted in latent group
model [13] for efficient inference. To be fair, we adopt k-
means clustering to partition the network into disjoint sets,
and convert the node clustering result as social dimensions.
Then, SVM is utilized for discriminative learning. For con-
venience, we denote this method as NodeCluster. It is es-
sentially the same as the LGC variant presented in [18].

MAJORITY uses the label information only. It does not
leverage any network information for learning or inference.
It simply predicts the class membership as the proportion of
positive instances in the labeled data. All nodes are assigned
with the same class membership. This classifier is inclined
to predict categorizes of larger size.

Note that our prediction problem is essentially multi-label.
It is empirically shown that thresholding can affect the fi-

5http://www.public.asu.edu/~ltang9/
6http://socialnetworks.mpi-sws.org/data-imc2007.
html
7http://www.youtube.com/

nal prediction performance drastically [3, 20]. For evalu-
ation purpose, we assume the number of labels of unob-
served nodes is already known and check the match of the
top-ranking labels with the truth. Such a scheme has been
adopted for other multi-label evaluation works [9]. We ran-
domly sample a portion of nodes as labeled and report the
average performance of 10 runs in terms of Micro-F1 and
Macro-F1. We use the same setting as in [18] for the baseline
methods for Flickr and BlogCatalog, thus the performance
on the two data sets are reported here directly.

6. EXPERIMENT RESULTS
In this section, we first examine how the performance

varies with social dimensions extracted based on edge-centric
clustering. Then we verify the sparsity of social dimensions
and its implication for scalability. We also study how the
performance varies with social dimensionality.

6.1 Prediction Performance
The prediction performance on all the data sets are shown

in Tables 4-6. The entries in bold face denote the best one
in each column. ModMax on YouTube is not applicable
due to the scalability constraint. Evidently, the models fol-
lowing the social-dimension framework (EdgeCluster and
ModMax) outperform other methods. The baseline method
MAJORITY achieves only 2% for Macro-F1 while other
methods reach 20% on BlogCatalog. The social network
do provide valuable behavior information for inference. The
collective inference scheme wvRN does not differentiate the
connections, thus shows poor performance when the network
is noisy. This is most noticeable for Macro-F1 on Flickr data.
The NodeCluster scheme forces each actor to be involved in
only one affiliation, yielding inferior performance compared
with EdgeCluster.

Moreover, edge-centric clustering shows comparable per-
formance as modularity maximization on BlogCatalog net-
work. A close examination reveals that these two approaches
are very close in terms of prediction performance. On Flickr
data, our EdgeCluster outperforms ModMax consistently.
Among all the compared methods, EdgeCluster is always
the winner This indicates that the extracted sparse social
dimensions do help in collective behavior prediction.

It is noticed the prediction performance on all the studied
social media data is around 20-30% for F1 measure. This is
partly due to the large number of labels in the data. Another
reason is that we only employ the network information here.
Since the SocDim framework converts network into features,
other behavior features (if available) can be combined with
the social dimensions for behavior learning.

6.2 Scalability Study
As we have introduced in Theorem 1, the social dimen-

sions constructed according to edge-centric clustering are
guaranteed to be sparse as the density is upperbounded by
a small value. Here, we examine how sparse the social di-
mensions are in practice. We also study how the computa-
tional time (with a Core2Duo E8400 CPU and 4GB mem-
ory) varies with the number of edge clusters. The computa-
tional time, the memory footprint of social dimensions, their
density and other related statistics on all the three data sets
are reported in Tables 7-9.

Concerning the time complexity, it is interesting that com-
puting the top eigenvectors of a modularity matrix actually
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Table 4: Performance on BlogCatalog Network

Proportion of Labeled Nodes 10% 20% 30% 40% 50% 60% 70% 80% 90%

EdgeCluster 27.94 30.76 31.85 32.99 34.12 35.00 34.63 35.99 36.29
ModMax 27.35 30.74 31.77 32.97 34.09 36.13 36.08 37.23 38.18

Micro-F1(%) wvRN 19.51 24.34 25.62 28.82 30.37 31.81 32.19 33.33 34.28
NodeCluster 18.29 19.14 20.01 19.80 20.81 20.86 20.53 20.74 20.78
MAJORITY 16.51 16.66 16.61 16.70 16.91 16.99 16.92 16.49 17.26

EdgeCluster 16.16 19.16 20.48 22.00 23.00 23.64 23.82 24.61 24.92
ModMax 17.36 20.00 20.80 21.85 22.65 23.41 23.89 24.20 24.97

Macro-F1(%) wvRN 6.25 10.13 11.64 14.24 15.86 17.18 17.98 18.86 19.57
NodeCluster 7.38 7.02 7.27 6.85 7.57 7.27 6.88 7.04 6.83
MAJORITY 2.52 2.55 2.52 2.58 2.58 2.63 2.61 2.48 2.62

Table 5: Performance on Flickr Network

Proportion of Labeled Nodes 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

EdgeCluster 25.75 28.53 29.14 30.31 30.85 31.53 31.75 31.76 32.19 32.84

ModMax 22.75 25.29 27.30 27.60 28.05 29.33 29.43 28.89 29.17 29.20
Micro-F1(%) wvRN 17.70 14.43 15.72 20.97 19.83 19.42 19.22 21.25 22.51 22.73

NodeCluster 22.94 24.09 25.42 26.43 27.53 28.18 28.32 28.58 28.70 28.93
MAJORITY 16.34 16.31 16.34 16.46 16.65 16.44 16.38 16.62 16.67 16.71

EdgeCluster 10.52 14.10 15.91 16.72 18.01 18.54 19.54 20.18 20.78 20.85

ModMax 10.21 13.37 15.24 15.11 16.14 16.64 17.02 17.10 17.14 17.12
Macro-F1(%) wvRN 1.53 2.46 2.91 3.47 4.95 5.56 5.82 6.59 8.00 7.26

NodeCluster 7.90 9.99 11.42 11.10 12.33 12.29 12.58 13.26 12.79 12.77
MAJORITY 0.45 0.44 0.45 0.46 0.47 0.44 0.45 0.47 0.47 0.47

Table 6: Performance on YouTube Network

Proportion of Labeled Nodes 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

EdgeCluster 23.90 31.68 35.53 36.76 37.81 38.63 38.94 39.46 39.92 40.07

ModMax — — — — — — — — — —
Micro-F1(%) wvRN 26.79 29.18 33.10 32.88 35.76 37.38 38.21 37.75 38.68 39.42

NodeCluster 20.89 24.57 26.91 28.65 29.56 30.72 31.15 31.85 32.29 32.67
MAJORITY 24.90 24.84 25.25 25.23 25.22 25.33 25.31 25.34 25.38 25.38

EdgeCluster 19.48 25.01 28.15 29.17 29.82 30.65 30.75 31.23 31.45 31.54

ModMax — — — — — — — — — —
Macro-F1(%) wvRN 13.15 15.78 19.66 20.90 23.31 25.43 27.08 26.48 28.33 28.89

NodeCluster 17.91 21.11 22.38 23.91 24.47 25.26 25.50 26.02 26.44 26.68
MAJORITY 6.12 5.86 6.21 6.10 6.07 6.19 6.17 6.16 6.18 6.19

is quite efficient as long as there is no memory concern. This
is observable on the Flickr data. However, when the network
scales to millions of nodes (YouTube Data), modularity max-
imization becomes impossible due to its excessive memory
requirement, while our proposed EdgeCluster method can
still be computed efficiently as shown in Table 9. The com-
putation time of EdgeCluster on YouTube network is much
smaller than Flickr, because the density of YouTube network
is extremely sparse and the total number of edges and the
average degree in YouTube are actually smaller than those
of Flickr as shown in Table 3.

Another observation is that the computation time of Edge-
Cluster does not change much with varying numbers of clus-
ters. No matter what the cluster number is, the computation
time of EdgeCluster is of the same order. This is due to the
efficacy of the proposed k-means variant in Figure 6. In the
algorithm, we do not iterate over each cluster and each cen-
troid to do the cluster assignment, but exploit the sparsity
of edge-centric data to compute only the similarity of a cen-
troid and those relevant instances. This, in effect, makes

the computational time independent of the number of edge
clusters.

As for the memory footprint reduction, sparse social di-
mension did an excellent job. On Flickr, with only 500 di-
mensions, the social dimensions of ModMax require 322.1M,
whereas EdgeCluster requires only less than 100M. This ef-
fect is stronger on the mega-scale YouTube network where
ModMax becomes impractical to compute directly. It is ex-
pected that the social dimensions of ModMax would occupy
4.6G memory. On the contrary, the sparse social dimensions
based on EdgeCluster only requires 30-50M.

The steep reduction of memory footprint can be explained
by the density of the extracted dimensions. For instance, in
Table 9, when we have 50000 dimensions, the density is only
5.2×10−5. Consequently, even if the network has more than
1 million nodes, the extracted social dimensions still occupy
tiny memory space. The upperbound of the density is not
tight when the number of clusters k is small. As k increases,
the bound is getting close to the truth. In general, the true
density is roughly half of the estimated bound.
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Table 7: Sparsity Comparison on BlogCatalog data with 10, 312 Nodes. ModMax-500 corresponds to modularity maximization
to select 500 social dimensions and EdgeCluster-500 denotes edge-centric clustering to construct 500 dimensions. Time denotes
the total time (seconds) to extract the social dimensions; Space represent the memory footprint (mega-byte) of the extracted
social dimensions; Density is the proportion of non-zeros entries in the dimensions; Upperbound is the density upperbound
computed following Eq. (1); Max-Size and Ave-Size show the maximum and average size of affiliations represented by the
social dimensions; Max-Aff and Ave-Aff denote the maximum and average number of affiliations one user is involved in.

Methods Time Space Density Upperbound Max-Size Ave-Size Max-Aff Ave-Aff

ModMax − 500 194.4 41.2M 1 — 10312 10312.0 500 500

EdgeCluster − 100 300.8 3.8M 1.1 × 10−1 2.2 × 10−1 8599 1221.3 187 23.5
EdgeCluster − 500 357.8 4.9M 6.0 × 10−2 1.1 × 10−1 5662 618.8 344 30.0
EdgeCluster − 1000 307.2 5.2M 3.2 × 10−2 6.0 × 10−2 3990 328.6 408 31.8
EdgeCluster − 2000 294.6 5.3M 1.6 × 10−2 3.1 × 10−2 3979 166.9 598 32.4
EdgeCluster − 5000 230.3 5.5M 6 × 10−3 1.3 × 10−2 3934 67.7 682 32.4
EdgeCluster − 10000 195.6 5.6M 3 × 10−3 7 × 10−3 3852 34.4 882 33.3

Table 8: Sparsity Comparison on Flickr Data with 80, 513 Nodes

Methods Time Space Density Upperbound Max-Size Ave-Size Max-Aff Ave-Aff

ModMax − 500 2.2 × 103 322.1M 1 — 80513 80513.0 500 500.0

EdgeCluster − 200 1.2 × 104 31.0M 1.2 × 10−1 3.9 × 10−1 42453 9683.4 156 24.1
EdgeCluster − 500 1.3 × 104 44.8M 7.0 × 10−2 2.2 × 10−1 31462 5604.0 352 34.8
EdgeCluster − 1000 1.6 × 104 57.3M 4.5 × 10−2 1.3 × 10−1 26504 3583.2 619 44.5
EdgeCluster − 2000 2.2 × 104 70.1M 2.7 × 10−2 7.2 × 10−2 25835 1289.5 986 54.4
EdgeCluster − 5000 2.6 × 104 84.7M 1.3 × 10−2 2.9 × 10−2 28281 1058.2 1405 65.7
EdgeCluster − 10000 1.9 × 104 91.4M 7 × 10−3 1.5 × 10−2 12160 570.8 1673 70.9

Table 9: Sparsity Comparison on YouTube Data with 1, 138, 499 Nodes

Methods Time Space Density Upperbound Max-Size Ave-Size Max-Aff Ave-Aff

ModMax − 500 N/A 4.6G 1 — 1138499 1138499 500 500.00

EdgeCluster − 200 574.7 36.2M 9.9 × 10−3 2.3 × 10−2 266491 11315 121 1.9877
EdgeCluster − 500 606.6 39.9M 4.4 × 10−3 9.7 × 10−3 211323 4992 255 2.1927
EdgeCluster − 1000 779.2 42.3M 2.3 × 10−3 5.0 × 10−3 147182 2664 325 2.3225
EdgeCluster − 2000 558.9 44.2M 1.2 × 10−3 2.6 × 10−3 81692 1381 375 2.4268
EdgeCluster − 5000 554.9 45.6M 5.0 × 10−4 1.0 × 10−3 35604 570 253 2.5028
EdgeCluster − 10000 561.2 46.4M 2.5 × 10−4 5.1 × 10−4 35445 289 356 2.5431
EdgeCluster − 20000 507.5 47.0M 1.3 × 10−4 2.6 × 10−4 29601 147 305 2.5757
EdgeCluster − 50000 597.4 48.2M 5.2 × 10−5 1.1 × 10−4 28534 59 297 2.6239

In Tables 7 - 9, we also include the statistics of the affilia-
tions represented by the sparse social dimensions. The size
of affiliations is decreasing with increasing number of social
dimensions. And actors can be associated with more than
one affiliations. It is observed the number of affiliations each
actor can be involved in also follows a power law pattern as
node degrees. Figure 8 shows the distribution of node de-
grees in Flickr and Figure 9 shows the node affiliations when
k = 10000.

6.3 Sensitivity Study
Our proposed EdgeCluster model requires users to spec-

ify the number of social dimensions (edge clusters) k. One
question remains to be answered is how sensitive the per-
formance is with respect to the parameter k. We examine
all the three data sets, but find no strong pattern to de-
termine the optimal dimensionality. Due to space limit, we
only include one case here. Figure 10 shows the Macro-F1
performance change on YouTube data. The performance,
unfortunately, is sensitive to the number of edge clusters. It
thus remains a challenge to determine the parameter auto-
matically.

A general trend across all the three data sets is that, the
optimal dimensionality increases as the proportion of labeled
nodes expands. For instance, when there is 1% of labeled
nodes in the network, 500 dimensions seem optimal. But
when the labeled nodes increases to 10%, 2000-5000 dimen-
sions become a better choice. In other words, when label
information is scarce, coarse extraction of latent affiliations
is better for behavior prediction; But when the label infor-
mation multiplies, the affiliations should be zoomed into a
more granular level.

7. RELATEDWORK
Within-network classification [11] refers to the classifica-

tion when data instances are presented in a network format.
The data instances in the network are not independently
identically distributed (i.i.d.) as in conventional data min-
ing. To capture the correlation between labels of neighboring
data objects, typically a Markov dependency assumption is
assumed. That is, the labels of one node depend on the la-
bels (or attributes) of its neighbors. Normally, a relational
classifier is constructed based on the relational features of
labeled data, and then an iterative process is required to
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determine the class labels for the unlabeled data. The class
label or the class membership is updated for each node while
the labels of its neighbors are fixed. This process is repeated
until the label inconsistency between neighboring nodes is
minimized. It is shown that [11] a simple weighted vote re-
lational neighborhood classifier [10] works reasonably well
on some benchmark relational data and is recommended as
a baseline for comparison. It turns out that this method is
closely related to Gaussian field for semi-supervised learning
on graphs [24].

Most relational classifiers, following the Markov assump-
tion, capture the local dependency only. To handle the long-
distance correlation, the latent group model [13], and the
nonparametric infinite hidden relational model [21] assume
Bayesian generative models such that the link (and actor
attributes) are generated based on the actors’ latent cluster
membership. These models essentially share the same fun-
damental idea as social dimensions [18] to capture the la-
tent affiliations of actors. But the model intricacy and high
computational cost for inference with the aforementioned
models hinder their application to large-scale networks. So
Neville and Jensen [13] propose to use clustering algorithm
to find the hard cluster membership of each actor first, and
then fix the latent group variables for later inference. This
scheme has been adopted as NodeCluster method in our
experiment. As each actor is assigned to only one latent
affiliation, it does not capture the multi-facet property of
human nature.

In this work, k-means clustering algorithm is used to par-
tition the edges of a network into disjoint sets. We also
propose a k-means variant to take advantage of its special
sparsity structure, which can handle the clustering of mil-
lions of edges efficiently. More complicated data structures
such as kd-tree [1, 8] can be exploited to accelerate the pro-
cess. In certain cases, the network might be too huge to
reside in memory. Then other k-means variants to handle
extremely large data sets like On-line k-means [17], Scal-
able k-means [2], Incremental k-means [16] and distributed
k-means [7] can be considered.

8. CONCLUSIONS AND FUTUREWORK
In this work, we examine whether or not we can predict

the online behavior of users in social media, given the be-
havior information of some actors in the network. Since the
connections in a social network represent various kinds of re-
lations, a framework based on social dimensions is employed.
In the framework, social dimensions are extracted to repre-
sent the potential affiliations of actors before discriminative

learning. But existing approach to extract social dimen-
sions suffers from the scalability. To address the scalability
issue, we propose an edge-centric clustering scheme to ex-
tract social dimensions and a scalable k-means variant to
handle edge clustering. Essentially, each edge is treated as
one data instance, and the connected nodes are the corre-
sponding features. Then, the proposed k-means clustering
algorithm can be applied to partition the edges into dis-
joint sets, with each set representing one possible affiliation.
With this edge-centric view, the extracted social dimensions
are warranted to be sparse. Our model based on the sparse
social dimensions shows comparable prediction performance
as earlier proposed approaches to extract social dimensions.
An incomparable advantage of our model is that, it can eas-
ily scale to networks with millions of actors while the ear-
lier model fails. This scalable approach offers a viable so-
lution to effective learning of online collective behavior in a
large scale.

In reality, each edge can be associated with multiple affil-
iations while our current model assumes only one dominant
affiliation. Is it possible to extend our edge-centric parti-
tion to handle this multi-label effect of connections? How
does this affect the behavior prediction performance? In so-
cial media, multiple modes of actors can be involved in the
same network resulting in a multi-mode network [19]. For in-
stance, in YouTube, users, videos, tags, comments are inter-
twined with each other. Extending our edge-centric cluster-
ing scheme to address this object heterogeneity as well can
be a promising direction to explore. For another, the pro-
posed EdgeCluster model is sensitive to the number of social
dimensions as shown in the experiment. Further research is
required to determine the dimensionality automatically. It
is also worth pursuing to mine other informative behavior
features from social media for more accurate prediction.
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APPENDIX

A. PROOF OF THEOREM 1
It is observed that the node degree in a social network

follows power law [14]. For simplicity, we use a continu-
ous power-law distribution to approximate the node degrees.
Suppose

p(x) = Cx−α, x ≥ 1

where x is a variable denoting the node degree and C is a
normalization constant. It is not difficult to verify that

C = α − 1.

Hence,

p(x) = (α − 1)x−α, x ≥ 1.

It follows that the probability that a node with degree larger
than k is

P (x > k) =

Z

+∞

k

p(x)dx = k−α+1.

Meanwhile, we have
Z k

1

xp(x)dx

= (α − 1)

Z k

1

x · x−αdx

=
α − 1

−α + 2
x−α+2|k1
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α − 1

α − 2

`
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´
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1
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The proof is completed.
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