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ABSTRACT
The recent few years have witnessed a rapid surge of par-
ticipatory web and social media, enabling a new laboratory
for studying human relations and collective behavior on an
unprecedented scale. In this work, we attempt to harness
the predictive power of social connections to determine the
preferences or behaviors of individuals such as whether a
user supports a certain political view, whether one likes one
product, whether he/she would like to vote for a presidential
candidate, etc. Since an actor is likely to participate in mul-
tiple different communities with each regulating the actor’s
behavior in varying degrees, and a natural hierarchy might
exist between these communities, we propose to zoom into
a network at multiple different resolutions and determine
which communities are informative of a targeted behavior.
We develop an efficient algorithm to extract a hierarchy of
overlapping communities. Empirical results on several large-
scale social media networks demonstrate the superiority of
our proposed approach over existing ones without consider-
ing the multi-resolution or overlapping property, indicating
its highly promising potential in real-world applications.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database applications—
Data Mining ; H.3.3 [Information Search and Retrieval]:
Clustering

General Terms
Algorithm, Experimentation

Keywords
Multi-Resolution, Overlapping Communities, Hierarchical
Clustering, Social Dimensions, Network-based Classification
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Owing to the rapid development of Internet, emails, par-
ticipatory Web, social media, and mobile applications, hu-
man beings are easier to connect to each other than ever.
Millions of users are playing, tagging, working, flirting, and
socializing online, producing oceans of data in forms of net-
work interactions each day, opening up a vast range of pos-
sibilities to study human relations and collective behavior
on an unprecedented scale. In this work, we aim to address
the following problem:

Given a social network and known preferences
or behaviors of individuals in the network, how
can we employ the connectivity to determine the
preferences or behaviors of others in the network?

Here, preferences or behaviors can refer to whether a user
supports some political view, whether one likes one product,
whether he/she would like to vote for a presidential candi-
date, etc. This problem is known as within-network classifi-
cation [18], or a special case of relational learning [12].

1.1 Optimal Number of Communities
In order to resolve this problem, we have to interpret social

connections smartly. As suggested by Tang and Liu [26], an
actor is likely to be involved in multiple different relations.
For instance, a user’s online contacts might be categorized
by colleagues, classmates, relatives, researchers, co-travelers
and many more. These friends of heterogeneous relations
can influence the user in varying degrees. Unfortunately,
most social media applications do not provide explicit rela-
tion type information. Hence, it is imperative to differenti-
ate these connections presented in a network. The authors
suggest that actors involving in the same relationship tend
to form a densely-knit group, (say, people of the same class
or company are likely to connect to each other). Hence, they
propose a social-dimension based framework to address the
behavior prediction problem. It consists of two steps: the
first step extracts communities from a network; the second
step builds a classifier by treating each node’s community
membership as features (which is defined as social dimen-
sions in the work). The framework turns out to outperform
other representative approaches based on collective infer-
ence.

Though showing promising performance on several social
media data sets, the social-dimension framework [26] re-
quires practitioners to specify the number of communities to
extract from a network. It seems that a proper parameter
can be critical to the success of the framework as indicated
in [25]. Consequently, some procedure like cross-validation



has to be used to determine a proper parameter. Consid-
ering a network with millions of actors, the community ex-
traction can be time-consuming, as each time a new value
is set, the whole community extraction procedure has to be
restarted again. Thus a natural question is:

Given a social network, can a machine automat-
ically determine the optimal number of commu-
nities to extract without cross validation?

The question seems interesting at first glimpse. Indeed, it is
often listed as future work in many papers about clustering
or community detection. Alternatively, we ask the following
question:

Is it necessary to determine the optimal number
of communities for community detection?

This question is essentially the underlying motive for us to
develop this piece of work. As implied by this work, it is
indeed unnecessary to determine an optimal number if a
multi-resolution approach is adopted.

1.2 Communities of Multiple Resolutions
In reality, actors are involved in multiple relations of which

some are associated with a natural hierarchy. For instance,
employees working on a small project form a community,
which is within a department, which might reside in an-
other larger community representing the whole company.
Similarly, the students of a class form a group, which is
within the department group. And the department group
resides in another group representing the whole university.
Evidently, these groups at different resolutions play assorted
regulations on one’s behavior. Instead of picking a proper
parameter, we conjecture that, by extracting communities at
all possible resolutions, we may be able to avoid a tedious
cross-validation procedure.

To find communities of varying resolutions, a natural so-
lution is hierarchical clustering. However, the overlapping
nature of different relations complicates the problem. One
user is likely to be involved in multiple different commu-
nities, and these communities each reside in a hierarchical
path. For example, one student might connect to some of
his former classmates online. These classmates span in dif-
ferent departments, which in turn form a university-wide
group. At the same time, he might connect to his current
colleagues, which also reside in a hierarchical structure. In
other words, one actor is allowed to reside in multiple dif-
ferent paths in the resultant dendrogram, instead of a single
one as commonly studied in existing hierarchical commu-
nity detection approaches. It requires advanced techniques
to find multi-resolution overlapping communities.

In this work, we present a learning technique that can ex-
tract overlapping communities at different resolutions. We
conduct agglomerative hierarchical clustering starting from
communities at the finest resolution in order to find out all
communities of coarse levels. The key difference of this work
from most hierarchical community detection approaches is
that it allows one node to reside in multiple different paths
in the final dendrogram. We also present a regularization
strategy on extracted communities and node affiliations for
classifier construction. It turns out the final solution is very
simple and effective. The proposed method outperforms
baseline methods substantially while requiring no critical

parameter input. Meanwhile, the method is efficient, pro-
viding a viable solution for practical deployment to handle
networks in many applications.

2. RELATED WORK
This work aims to infer user behaviors or preferences given

limited labeled nodes and an associated social network. Re-
lated work includes both classification with network data
and community detection.

2.1 Classification with Network Data
Within-network classification [18, 10] refers to the clas-

sification when data instances are presented in a network
format. The nodes in social networks, are usually not in-
dependent with each other, which differs from conventional
data mining or machine learning. To capture the correla-
tion between labels of neighboring data objects, a typical
assumption widely adopted is Markov dependency. That is,
the labels of one node depend on the labels (or attributes) of
its neighbors. Normally, a relational classifier is constructed
based on the relational features of labeled data, and then
an iterative process is required to determine the class labels
for the unlabeled data. The class label or the class member-
ship of each node is updated in turn while the labels of its
neighbors are fixed. This process is repeated until the label
inconsistency between neighboring nodes is minimized. Such
iterative process includes Gibbs sampling [11], iterative clas-
sification[16] and relaxation labeling [5]. It is shown that [18]
a simple weighted vote relational neighborhood classifier [17]
works reasonably well on some benchmark relational data
and is recommended as a baseline for comparison. It turns
out that this method is closely related to Gaussian field for
semi-supervised learning on graphs [32].

A potential limitation with collective inference is that it
does not differentiate heterogeneous relations as presented
in a network. Typically, people in a social network get con-
nected due to various reasons. These relations correlates
with class labels in varying degrees. Collective inference, if
applied directly to a social network, does not differentiate
these relations. Hence, a social-dimension based framework
is proposed [26]. It consists of two steps: extract social
dimensions representing different affiliations in a network;
and treat social dimensions as features to build classical
attribute-based classifier. Since people of the same relation
or affiliation form communities, this framework essentially
adopt communities extracted from a network as features
for classification learning with network data. As an actor
is likely to participate in multiple different relations, thus
multiple communities, the authors suggest using soft cluster-
ing or probabilistic approaches to extract social dimensions.
For example, a soft version of modularity optimization is
adopted in [24]. However, soft clustering or probabilistic
approaches often lead to dense social dimensions, causing
computational barrier with large-scale networks. Therefore,
the authors define a community as a set of edges and propose
EdgeCluster algorithm to extract sparse social dimensions so
that the framework can handle mega-scale networks [25]. It
essentially partition edges into disjoint sets such that a node
can be associated with multiple different communities. In
order to partition edges, the authors suggest treating each
edge as one instance, and terminal nodes as its features.
The resultant EdgeCluster algorithm is reported to handle
a network with 1 million nodes in around 10 minutes on a



high-end PC. Some other work models the connections using
a latent group model [19, 30].

2.2 Community Detection
Finding overlapping communities is attracting increasing

attentions. Note that finding overlapping communities is
quite a different task from soft clustering [31]. As pointed
out in [25], soft clustering often returns a dense community
indicator matrix. It destroys the genuine sparsity presented
in a network, thus causing many computational problems.
On the contrary, the community indicator matrix of over-
lapping communities is often quite sparse.

Palla et al. propose a clique percolation method to dis-
cover overlapping dense communities [21]. It consists of two
steps: first find out all the cliques of size k in a graph. Two
k-cliques are connected if they share k − 1 nodes. Based on
the connections between cliques, we can find the connected
components with respect to k-cliques. Each component then
corresponds to one community. Since a node can be in-
volved in multiple different k-cliques, the resultant commu-
nity structure allows one node to be associated with multiple
different communities. A similar idea is presented in [22], in
which the authors suggest to find out all the maximal cliques
in a network and then perform hierarchical clustering.

On the other hand, Gregory [13] extends the Newman-
Girvan method [20] to handle overlapping communities. The
original Newman-Girvan method recursively removes edges
with highest betweenness until a network is separated into
prespecified number of disconnected components. But it
only outputs non-overlapping communities. Therefore, Gre-
gory proposes to add one more action (node splitting) be-
sides edge removal. The algorithm recursively splits nodes
that are likely to reside in multiple communities into two,
or removes edges that seem to bridge two different commu-
nities. This process is repeated until the network is discon-
nected into desired number of communities.

The aforementioned methods enumerate all the possible
cliques or shortest paths in a network, whose computational
cost is daunting for real-world large-scale networks. Re-
cently, a simple scheme proposed to detect overlapping com-
munities is to define communities as a set of edges, instead
of nodes [25, 7, 1]. The network can be converted into an
edge-centric view or a line graph and then existing methods
to find disjoint communities can be applied. However, this
edge-centric view assumes each link is associated with one
cluster while weak ties and cross-community connections are
common in real-world networks.

Meanwhile, recent techniques are pushing hard for large-
scale hierarchical clustering. One commonly used criterion
is based on modularity [6], which claims to be as efficient as
O(md logn) wherem, n, d are the number of edges, the num-
ber of nodes and the depth of resultant dendrogram, respec-
tively. However, it is noticed that the approach has many
unbalanced community merge in the initial stage, leading to
high computational cost [28]. So the authors suggest bias-
ing the community merge of comparable community sizes.
The state-of-the-art method is Louvain method [3]. Its key
idea is to greedily expand a community by checking its lo-
cal neighboring nodes. After a community is formed, the
community becomes a super node and the procedure can be
applied again. While previous approaches output a binary
tree, this method automatically presents a hierarchy that is
optimized for modularity. Based on our empirical experi-

ence, this method tends to output a very shallow hierarchy,
which is not quite suitable for classification.

Hierarchical overlapping communities are also calling for
attentions. Ahn et al. [1] apply typical hierarchical cluster-
ing to line graph; Lancichinetti et al. [14] rely on iterative
local greedy search to expand a seed community based on a
fitness function. By changing associated parameters in the
fitness functions, communities at different resolutions can be
obtained. Please refer to [9] for a comprehensive treatment.

3. ALGORITHM
In this work, we follow the social-dimension based frame-

work proposed in [26] to address classification problem with
network data. It consists of two steps:

• Extract communities from a network;

• Treat nodes’ community membership as features to
build a classifier.

One of the key components in the framework is to extract
meaningful communities from a network. As we have men-
tioned in the introduction, actors are likely to involve in
a hierarchy of different communities. These communities
at different resolutions might correlate with a class label in
varying degrees. Extracting a specified number of commu-
nities does not necessarily reflect the hierarchical structure.
Therefore, we propose a multi-resolution approach to extract
overlapping communities at diverse resolutions.

3.1 MROC: Extraction of Multi-Resolution
Overlapping Communities

To extract communities at a variety of resolutions, we
here present an agglomerative hierarchical clustering start-
ing from communities at the highest resolution. We em-
phasize that the method presented here is not the only way
to achieve the desired goal. Of course, divisive hierarchical
clustering like [13] can also be employed, but its computa-
tional cost is prohibitive.

One fundamental question of this multi-resolution approach
is, what are the communities at highest resolution in a net-
work? A majority of hierarchical community detection meth-
ods [6, 28, 3] start from each node and progressively join two
nodes if they are similar. Here, we conjecture that it is a
user and his friends (one user’s social circle) forming the
smallest community.

In many social networks, a high clustering coefficient is
observed [4]. Clustering coefficient of one node i is defined
as the probability of connections between one node’s neigh-
boring nodes [29]. Suppose a node vi has di neighbors, and
there are ki edges among these neighbors, then the cluster-
ing coefficient is

CCi =

 ki
di×(di−1)/2

di > 1

0 di = 0 or 1
(1)

where di is the degree of node vi. A high clustering coef-
ficient indicates a set of users interacting with each other
frequently. For example, a study on Orkut [2] showed that
78% of interactions happen between users and their friends.

Given these observations, we propose to treat a node and
its neighbors as base communities. Note that, this allows
one node to participate in multiple different communities.
In particular, a node i with degree di is associated with up
to di different communities. Since each user and his friends



Figure 1: A Toy Example

Figure 2: Resultant Dendrogram (shaded ones are
newly generated communities)

form a base community, we have at most n base communities
in total. For example, in the toy example in Figure 1, there
are 6 nodes. The base communities are the 5 communities
at the bottom of the dendrogram in Figure 2 (as the base
communities constructed from nodes 5 and 6 are the same).

The remaining process is standard: we recursively merge
two communities with maximum similarity until all the com-
munities are merged into one or certain criterion is satisfied
(say, community sizes exceeding a threshold). Without loss
of generality, we use Jaccard index [23] to calibrate the sim-
ilarity between two communities:

J(Ci, Cj) =
|Ci ∩ Cj |
|Ci ∪ Cj |

(2)

where |Ci ∩ Cj | is the number of nodes shared by two com-
munities and |Ci ∪Cj | is the total number of nodes residing
in the two communities. For example,

J({1, 2, 4}, {1, 3, 4}) =
|{1, 4}|
|{1, 2, 3, 4}| = 0.5.

Jaccard index has an innate bias toward merging two com-
munities of smaller sizes due to the denominator. Conse-
quently, nodes with high degrees, which would generate a
huge base community, would be merged later.

Figure 2 is the resultant dendrogram of applying our pro-
posed multi-resolution approach to the toy example in Fig-
ure 1. As shown in the figure, some of the community merges
do not produce a new one. Node 4 in the toy example seems
to be involved in two different communities {1, 2, 3, 4} and
{4, 5, 6}. Interestingly, both communities are extracted us-
ing our approach, but at different resolutions. {4, 5, 6} is
the base community produced by node 5, and {1, 2, 3, 4}
is produced by merging two base communities {1, 2, 4} and
{1, 3, 4}.

Note that agglomerative hierarchical clustering can take
very long time if not implemented in a correct choice. First
of all, it is impossible to save similarities between all pairs

Input: a network G(V,E);
maximal community size α for future merge;

Output: social dimensions S.
1. set C = {};
2. for each node i in V
3. append base community Ci into C;
4. output the community indicator SCi ;
5. end
6. while C is not empty do
7. pop Ci from C;
8. Cj = arg maxC′∈Neighbor(Ci) J(C′, Ci);
9. Cnew = Ci ∪ Cj ;

10. output SCnew if Cnew 6= Ci and Cnew 6= Cj ;
11. remove Ci and Cj from C;
12. append Cnew into C if |Cnew| < α;
13. end

Figure 3: Algorithm for Extraction of MROC

Table 1: Social dimensions of different resolutions
Node Social Dimensions

1 1 1 1 0 0 1 1
2 1 1 0 1 0 1 1
3 1 0 1 1 0 1 1
4 0 1 1 1 1 1 1
5 0 0 0 1 1 0 1
6 0 0 0 1 1 0 1

of communities as that would require extensive memory re-
sources. For another, one key observation is that one com-
munity can only merge with those communities sharing nodes
with it. Hence, it is not necessary to compute all the pairwise
similarities between communities. We only need to compute
the similarity between one community and its neighboring
communities. Further, all the community merges are local.
Hence, given a set of communities C = {Ci} at certain res-
olution, we do not need to find the community pair with
maximum similarity to merge. Instead, for each community
Ci, we locate its neighboring communities and merge Ci with
the most similar one (say, Cj). After the merge, Ci and Cj

are removed from C for future consideration. Thus, in one
scan of n base communities, we obtain at most n/2 newly
generated communities. Therefore, starting from O(n) base
communities, we only need O(log2 n) scans to extract com-
munities at all resolutions, thus saving tremendous compu-
tational cost. In practice, we simply maintain a queue for
communities. The detailed algorithm is summarized in Fig-
ure 3.

In the algorithm, every time we produce a new commu-
nity, we output its corresponding social dimension represen-
tation SC (essentially the community indicator vector). For
example, the final output for our toy example is shown in
Table 1.

3.2 Regularization on Communities
After we obtain the social dimensions representing over-

lapping communities of various resolutions, we treat them
as features and conduct conventional supervised learning.
In order to handle large-scale data with high dimensionality
and enormous instances, we adopt linear SVM which can be
finished in linear time [8]. Generally, the larger a commu-
nity size is, the weaker the connections inside the community



Input: a network G(V,E);
labels (Y `) for some nodes in the network;

Output: labels of unlabeled nodes (Y u).
1. Extract social dimensions S of MROC following

algorithm in Figure 3;
2. Perform regularization on S;
3. Build SVM M given S` and Y `;
4. Predict labels of unlabeled nodes given M and Su.

Figure 4: SocioDim Learning with MROC

are. Hence, we would like to build a SVM relying more on
communities of smaller sizes. In order to achieve this, we
modify typical SVM objective function as follows:

minλ

nX
i=1

|1− yi(x
T
i w + b)|+ + wT Σw (3)

where λ is a regularization parameter for SVM1, |z|+ =
max(0, z) represents SVM hinge loss, Σ is a diagonal matrix
to regularize the weights assigned to different communities.
In particular, Σjj = h(|Cj |) is the penalty coefficient associ-
ated with community Cj . The penalty function h should be
monotonically increasing with respect to community size. In
other words, a larger weight assigned to a large community
results in a higher cost.

Interestingly, with subtle manipulation, the formula in
Eq. (3) can be solved using standard SVM package with
modified input. Let X represent the input data with each
row being an instance (e.g., Table 1), and w̃ = Σ1/2w. Then
the formula can be rewritten as

minλ
X

i

|1− yi(x
T
i w + b)|+ +

1

2
wT Σ

1
2 Σ

1
2 w

= minλ
X

i

|1− yi(x
T
i Σ−

1
2 Σ

1
2 w + b)|+ +

1

2
‖w̃‖22

= minλ
X

i

|1− yi(x̃
T
i w̃ + b)|+ +

1

2
‖w̃‖22

where x̃T
i = xT

i Σ−
1
2 . Hence, given an input data matrix

X, we only need to left multiply X by Σ−
1
2 . It is observed

that community sizes of a network tend to follow a power
law distribution as shown in the experiment part. Hence,
we recommend h(|Cj |) = log |Cj | or (log |Cj |)2.

On the other hand, one node can be affiliated with differ-
ent communities. The node affiliations also observe a heavy-
tail distribution. Intuitively, a node participating many
communities influences less on other group members com-
pared with those “devoted” ones. For effective classification
learning, we regularize node affiliations by normalizing each
instance’s social dimensions to sum up to 1. Later in the
experiment, we will study which regularization affects more
on classification.

The overall classification learning procedure is summa-
rized in Figure 4. It extracts overlapping communities at
multiple resolutions, and then applies certain kind of regu-
larization to feed into SVM learning.

1We use a different notation λ from standard formulation to
avoid the confusion with community C.

Table 2: Statistics of Social Media Data. Max-
Degree denotes the maximum degree, Ave-Degree
the average degree, and Clu-Coefficient the average
clustering coefficient.

Data Set BlogCatalog Flickr YouTube
Categories 39 195 47

Nodes 10, 312 80, 513 138, 499
Links 333, 983 5, 899, 882 2, 990, 443

Density 6.3 ×10−3 1.8 ×10−3 4.6 ×10−6

Max-Degree 3, 992 5, 706 28, 754
Ave-Degree 65 146 5

Clu-Coefficient 0.49 0.61 0.17

4. EXPERIMENT SETUP
In this section, we present the data collected from so-

cial media websites for evaluation, and baseline methods for
comparison.

Three benchmark social media data sets in [24] are used to
examine our proposed model for collective behavior learning:
BlogCatalog2, Flickr3 and YouTube4. BlogCatalog is a so-
cial blog directory where the bloggers can register their blogs
under the pre-specified categories. In BlogCatalog, the blog-
ger’s interests (categories) are the behavior labels. Flickr
and YouTube are both content sharing platforms, with a fo-
cus on photos and videos, respectively. In these two sites,
users can share their contents, upload tags and subscribe to
different interest groups. These interest groups are adopted
as users’ preference for prediction. The statistics of the data
sets are reported in Table 2.

We apply our proposed MROC algorithm to all the three
data sets to extract overlapping communities of varying res-
olutions and convert them to social dimensions for SVM
learning with regularization on communities. Since social
media networks are very noisy, the connections between group
members are weak especially in a large group. Hence, we set
α in the algorithm (Figure 3) to 1000. The penalty function
of community size is h = log |C|.

Since MROC extracts communities of two properties: over-
lapping and multi-resolution, two baseline approaches in
conjunction with social-dimension framework are included
for comparison:

• Learning with disjoint communities in multiple reso-
lutions. We use Louvain method [3] (denoted as Lou-
vain) to extract hierarchical communities from a net-
work. Louvain method is known as the state-of-the-
art method in terms of efficiency and cluster qual-
ity. It consists of two steps: the first step greedily
assigns each node into a cluster such that the modu-
larity is maximized. In the second step a new network
is built, with nodes corresponding to a cluster found
in the first step, and the weight between two nodes
are aggregated from the corresponding clusters. These
two steps are repeated until no increase of modularity
is possible. Louvain method can only generate non-
overlapping clusters in a hierarchy.

• The edge-centric clustering algorithm (EdgeCluster) [25].
EdgeCluster extracts a prespecified number of overlap-

2http://www.blogcatalog.com/
3http://www.flickr.com
4http://www.youtube.com



ping communities from a network. It does not take into
account the multi-resolution property associated with
communities. The core idea is that while actors are
individually involved in multiple overlapping commu-
nities, their connections are normally associated with
only one community. EdgeCluster views a social net-
work in a different angle by treating edges as instances
and nodes as features. It uses an efficient k-means clus-
tering variant to cluster edges into disjoint sets, result-
ing in overlapping node communities. The resultant
social dimensions thus are sparse, enabling the social-
dimension based framework to handle mega-scale net-
works. This algorithm demonstrates comparable clas-
sification performances as that based on modularity
optimization [24].

For completeness, we also include a recommended collective-
inference based method for classification: Weighted-Vote
Relational Neighbor Classifier (wvRN) [17]. wvRN has been
shown to work well for classification with network data and
is recommended as a baseline method for comparison [18].
There is no training necessary and the class labels are deter-
mined by the weighted mean of neighbors at prediction. To
see the relative significance of performance improvement, we
report MAJORITY as well. It always predicts labels based
on class prevalence and does not utilize network information
at all.

We follow the same evaluation procedure as in [24, 25]5.
Each time, we randomly select part of instances as training
data, and the rest as test data. This process is repeated for
10 times for each setup. For SVM training, we use Liblin-
ear [8]. As each data set has more than one categories, the
average classification performance in terms of Micro-F1 and
Macro-F1 [27] are reported here.

5. EXPERIMENT RESULTS
In this section, we investigate how MROC performs on

real-world social media data in terms of classification per-
formance and computational time. Some in-depth analysis
of the extracted communities are also reported.

5.1 Prediction Performance Comparison
The performance of various approaches is reported in Ta-

bles 3, 4 and 5. The entries in bold denote the best perfor-
mance. Evidently, social-dimension based approaches (MROC,
Louvain, and EdgeCluster) outperform methods based on
collective inference. MROC outperforms other methods con-
sistently across all cases for BlogCatalog and Flickr Data.
Louvain, though extracts multi-resolution communities, does
not allow communities to overlap, thus the predictions are
inferior, especially in terms of Macro-F1. EdgeCluster, on
the other hand, extracts overlapping communities but does
not exhaust communities of various resolutions. Hence, the
corresponding learning performance is not comparable to
MROC.

Interestingly, EdgeCluster and MROC perform similarly
on YouTube data, with MROC being slightly better on Macro-
F1 and EdgeCluster on Micro-F1. This is probably because
the YouTube data studied is very sparse. Its density is only
4.6 × 10−6 as shown in Table 2. The average degree in
YouTube is only 5, way much lower than that of BlogCatalog

5http://www.public.asu.edu/~ltang9/social_
dimension.html
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Figure 5: Community Size vs. Relative Importance

Table 6: Computational Time of MROC
Data Set Time (seconds) # Communities

BlogCatalog 358 19,773
Flickr 14,714 153, 629

YouTube 9,568 1,034,116

and Flickr. With such a sparely-connected network, the user
interests are very likely to be shared by small-sized commu-
nities. Hence, even if we extract communities at higher level
of a hierarchy, they cannot help much to infer the preference
of actors. Exploring overlapping communities at multiple
resolutions is worthwhile, because it improves, in the worse
case does not decrease, the performance.

Communities of different resolutions play different roles
for behavior prediction. Figure 5 plots the average weights
of different communities in the built SVM classifier on Blog-
Catalog data. The weights in a sense reflect the importance
of communities for classification. As seen in the figure, com-
munities of various sizes all contribute to the classification
decision function, indicating the necessity to extract com-
munities at multiple resolutions.

5.2 Time Complexity
The superior performance of MROC comes with higher

computational cost. Hierarchical clustering on a network
is normally time-consuming. However, by carefully design-
ing the algorithm using local merges as we have introduced
in Section 3.1, MROC is able to handle real-world large-
scale networks in a reasonable time period. Table 6 shows
the computational time (running on an Intel Core2Duo 3.0G
CPU) and the number of extracted communities for MROC.
For a mega-scale network like YouTube, it takes around 3
hours to finish. On the contrary, Flickr with fewer users
(80K) requires around 4 hours to finish. This is because
Flickr has many more connections (5.8 million). The neigh-
boring communities considered for a merge multiply in MROC,
hence costing more time than YouTube. It is true that
MROC takes longer time than EdgeCluster as reported in [25].
Community extraction is a preprocessing step for classifica-
tion learning in many applications. The classification per-
formance improvement considered, it is often worthwhile to
explore MROC if computational time is not critical. In ad-
dition, MROC does not require any parameter tuning.



Table 3: Performance on BlogCatalog
Proportion of Training Set 10% 20% 30% 40% 50% 60% 70% 80% 90%

Micro-F1 (%)

MROC 34.15 36.60 37.57 38.51 39.04 40.00 39.90 40.55 40.98
Louvain 18.17 21.28 23.44 24.65 25.18 25.85 25.71 25.91 26.77

EdgeCluster 27.94 30.76 31.85 32.99 34.12 35.00 34.63 35.99 36.29
wvRN 19.51 24.34 25.62 28.82 30.37 31.81 32.19 33.33 34.28

MAJORITY 16.51 16.66 16.61 16.70 16.91 16.99 16.92 16.49 17.26

Macro-F1 (%)

MROC 20.43 23.49 24.80 25.93 27.05 27.49 28.30 28.25 28.59
Louvain 9.80 10.75 11.26 11.48 11.60 11.50 11.33 11.46 11.52

EdgeCluster 16.16 19.16 20.48 22.00 23.00 23.64 23.82 24.61 24.92
wvRN 6.25 10.13 11.64 14.24 15.86 17.18 17.98 18.86 19.57

MAJORITY 2.52 2.55 2.52 2.58 2.58 2.63 2.61 2.48 2.62

Table 4: Performance on Flickr
Proportion of Training Set 1% 2% 3% 4% 5% 6% 7% 8% 9%

Micro-F1 (%)

MROC 25.35 28.97 29.74 31.67 32.51 33.34 34.07 33.89 34.44
Louvain 22.15 23.12 23.14 23.43 23.54 23.68 23.60 23.55 23.73

EdgeCluster 25.75 28.53 29.14 30.31 30.85 31.53 31.75 31.76 32.19
wvRN 17.70 14.43 15.72 20.97 19.83 19.42 19.22 21.25 22.51

MAJORITY 16.34 16.31 16.34 16.46 16.65 16.44 16.38 16.62 16.67

Macro-F1 (%)

MROC 12.33 16.24 17.73 19.46 20.74 21.76 23.15 23.67 23.73
Louvain 3.94 5.07 4.55 5.22 5.20 5.34 5.57 5.30 5.64

EdgeCluster 10.52 14.10 15.91 16.72 18.01 18.54 19.54 20.18 20.78
wvRN 1.53 2.46 2.91 3.47 4.95 5.56 5.82 6.59 8.00

MAJORITY 0.45 0.44 0.45 0.46 0.47 0.44 0.45 0.47 0.47

Table 5: Performance on YouTube
Proportion of Training Set 1% 2% 3% 4% 5% 6% 7% 8% 9%

Micro-F1 (%)

MROC 31.87 33.96 35.00 35.30 35.91 36.44 36.51 37.28 38.76
Louvain 30.21 31.59 29.93 32.50 31.11 27.05 31.56 30.29 30.26

EdgeCluster 23.90 31.68 35.53 36.76 37.81 38.63 38.94 39.46 39.92
wvRN 26.79 29.18 33.10 32.88 35.76 37.38 38.21 37.35 38.68

MAJORITY 24.90 24.84 25.25 25.23 25.22 25.33 25.31 25.34 25.38

Macro-F1 (%)

MROC 24.03 26.92 28.96 29.63 30.31 30.63 31.42 31.64 32.84
Louvain 18.30 21.08 16.25 21.21 20.66 18.33 20.65 20.28 20.58

EdgeCluster 19.48 25.01 28.15 29.17 29.82 30.65 30.75 31.23 31.45
wvRN 13.15 15.78 19.66 20.90 23.31 25.43 27.08 26.48 28.33

MAJORITY 6.12 5.86 6.21 6.10 6.07 6.19 6.17 6.16 6.18

5.3 Distribution and Regularization Effect
In this subsection, we show some distributions of the ex-

tracted communities, which in a sense justifies our regu-
larization on communities. The distributions of the size of
extracted communities are shown in Figure 6. They all ap-
proximately follow a power law distribution: very few com-
munities have abundant members while the majority have
a relatively small number of members ranging from tens to
hundreds. In a similar vein, the node affiliation distribution
also demonstrates a long tail as shown in Figure 7.

If a community is huge, we expect the connections in the
group to be weak, thus should weigh relatively less for classi-
fication (corresponding to Community-Size regularization).
Similarly, when one node is associated with many commu-
nities, its influence on other group members should be dis-
counted (Node-Affiliation Regularization). Table 7 shows
the effect of different regularization strategies. Due to space
limit, we only present the case of BlogCatalog here. Simi-
lar patterns are observed in the other two data sets. None
means we use boolean representations as in Table 1, Com-
munity Size divides the entries by the log of the commu-

nity size, Node-Affiliation normalizes each node’s commu-
nity membership indicator to sum to 1, and Both, as sug-
gested by the name, considers both the regularization effect
of Community-Size and Node-Affiliation.

As seen in the table, if no regularization is considered,
the performance is worst. It seems that the regularization
of Node-Affiliation affects more on the classification perfor-
mance than Community-Size. After all, the performance is
best when both regularization effects are taken. We have
to point out that, in this case, it is indeed quite similar to
the tf-idf weighting scheme for vector space model of doc-
uments. We emphasize that such a weighting scheme for
social dimensions can lead to quite a different performance.

6. CONCLUSIONS AND FUTURE WORK
The expanded availability of social media presents many

opportunities and challenges to infer collective behavior us-
ing social network information. In a social network, actors
are often involved in different communities and these com-
munities might form a hierarchy. In this work, we present
an efficient and effective approach MROC to extract overlap-
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Figure 6: Extracted community size distribution in BlogCatalog, Flickr and Youtube data
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Figure 7: Node affiliation distribution in BlogCatalog, Flickr and Youtube data

Table 7: Regularization Effect on Classification Performance
Regularization 10% 20% 30% 40% 50% 60% 70% 80% 90%

Micro-F1 (%)

Both 34.15 36.60 37.57 38.51 39.04 40.00 39.90 40.55 40.98
Node-Affiliation 33.50 35.84 36.78 37.93 38.59 39.47 39.06 40.10 40.70
Community-Size 18.73 24.34 25.62 28.82 30.37 31.81 32.19 33.33 34.28

None 27.80 29.68 30.87 31.61 32.19 32.99 32.79 34.19 34.09

Macro-F1 (%)

Both 20.43 23.49 24.80 25.93 27.05 27.49 28.30 28.25 28.59
Node-Affiliation 19.82 22.52 24.00 25.19 26.66 26.65 27.28 27.34 28.72
Community-Size 18.73 20.93 22.62 23.62 24.05 24.66 24.97 25.21 25.54

None 17.41 19.24 20.57 21.30 22.05 22.55 22.96 23.74 24.40

ping communities at different resolutions, and then utilize
them as features for behavior prediction. This in effect does
not require users to provide a prespecified number of commu-
nities. The learning framework can automatically determine
which communities are more relevant to a target behavior.
Empirical results on several benchmark social media data
sets validate the efficacy of our approach. It suggests that
both overlapping and multi-resolution properties should be
considered for community extraction and learning with net-
work data.

Currently, MROC requires hours to extract communities
from a network of millions of nodes. It is worthy develop-
ing more efficient methods. It is noticed that the optimal
spectral cut in large-scale networks often results in commu-
nities of size between 100−200 [15]. Does this indicate that
communities exceeding certain size does not help for clas-
sification? More work can be done to unravel the mystery.
We notice that there are some other methods to extract
a hierarchy of overlapping communities. A comprehensive
comparison of our method with them would be interesting
as well.
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