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Multi-label problems arise in various domains such as multi-topic document categorization, pro-
tein function prediction, and automatic image annotation. One natural way to deal with such
problems is to construct a binary classifier for each label, resulting in a set of independent bi-
nary classification problems. Since multiple labels share the same input space, and the seman-
tics conveyed by different labels are usually correlated, it is essential to exploit the correlation
information contained in different labels. In this paper, we consider a general framework for ex-
tracting shared structures in multi-label classification. In this framework, a common subspace is
assumed to be shared among multiple labels. We show that the optimal solution to the proposed
formulation can be obtained by solving a generalized eigenvalue problem, though the problem is
nonconvex. For high-dimensional problems, direct computation of the solution is expensive, and
we develop an efficient algorithm for this case. One appealing feature of the proposed frame-
work is that it includes several well-known algorithms as special cases, thus elucidating their
intrinsic relationships. We further show that the proposed framework can be extended to the
kernel-induced feature space. We have conducted extensive experiments on multi-topic web page
categorization and automatic gene expression pattern image annotation tasks, and results demon-
strate the effectiveness of the proposed formulation in comparison with several representative
algorithms.
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1. INTRODUCTION

Learning from objects annotated with multiple labels is a frequently encoun-
tered and widely studied problem in many domains. For example, in web page
categorization [Ueda and Saito 2002a; Kazawa et al. 2005; Ueda and Saito
2002b; Tang et al. 2009], a Web page can be assigned to multiple topics. In gene
and protein function prediction [Barutcuoglu et al. 2006; Roth and Fischer
2007], multiple functional labels may be associated with each gene and pro-
tein, since an individual gene or protein usually performs multiple functions.
In automatic image annotation [Barnard et al. 2003; Monay and Gatica-Perez
2007; Li and Wang 2008; Carneiro et al. 2007], multiple semantic labels are
usually assigned to a single image to indicate the presence of multiple objects in
it. One common aspect of these problems is that multiple labels are associated
with a single object, and they are called multi-label classification problems.
Such problems are more general than the traditional multi-class problems in
which a single label is assigned to an object. Driven by various applications,
such problems have recently received increasing attention [McCallum 1999;
Jin and Ghahramani 2002; Elisseeff and Weston 2002; Yu et al. 2005; Zhang
and Zhou 2006, 2007; Zhou and Zhang 2007; Sun et al. 2008a; Ghamrawi and
McCallum 2005; Kang et al. 2006; Yan et al. 2007; Ji and Ye 2009].

One simple and popular approach for multi-label classification is to con-
struct a binary classifier for each label in which instances relevant to this
label form the positive class, and the rest form the negative class. This ap-
proach has been applied successfully to various applications [Fan and Lin
2007; Yang and Pedersen 1997; Joachims 1998]. However, it fails to capture
the correlation information among different labels, which is critical for many
applications where the semantics conveyed by different labels are correlated.
Indeed, it has been shown that the decoupling of multiple labels may com-
promise the performance significantly in certain applications [Ueda and Saito
2002a]. For example, in modeling the topics and authorship of documents, it
is evident that the topics and authors of documents are correlated, since a
particular author may only write on certain topics. Hence, it is desirable to
model them in a coordinated fashion so that their intrinsic relationships can be
captured.

In this article, we propose a general framework for extracting shared struc-
tures (subspace) in multi-label classification. In this framework, a binary
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classifier is constructed for each label to discriminate this label from the rest of
them. However, unlike the approach that builds the binary classifiers indepen-
dently, a low-dimensional subspace is assumed to be shared among multiple
labels. The predictive functions in our formulation consist of two parts: the first
part is contributed from the representations in the original data space, and the
second one is contributed from the embedding in the shared subspace. A sim-
ilar formulation has been proposed in Ando and Zhang [2005] for multi-task
learning. We show that when the least squares loss is used in classification,
the linear transformation that characterizes the shared subspace can be com-
puted by solving a generalized eigenvalue problem. In contrast, the formulation
proposed in Ando and Zhang [2005] is nonconvex and needs to be solved iter-
atively. For high-dimensional problems, direct computation of the solution is
computationally expensive, and we develop an efficient algorithm for this case.
One appealing feature of the proposed framework is that it includes several
well-known algorithms as special cases, thus elucidating their intrinsic rela-
tionships. We further show that the proposed framework can be extended to the
kernel-induced feature space. We have conducted extensive experiments on web
page categorization and automatic gene expression pattern image annotation
tasks, and results demonstrate the effectiveness of the proposed formulations.
Experimental results also show that the proposed formulations based on the
least squares loss is comparable to other formulations based on the hinge loss,
while it is much more efficient.

The key contributions of this article are highlighted as follows.

—We propose a general framework for extracting shared structures in multi-
label classification. In this framework, the correlation information among
multiple labels is captured by a low-dimensional subspace shared among all
labels.

—We show that when the least squares loss is used in classification, the shared
structure can be computed by solving a generalized eigenvalue problem. To
reduce the computational cost, we propose an efficient algorithm for high-
dimensional problems.

—We show that the proposed formulation includes several well-known formu-
lations as special cases and further extend it to the kernel-induced feature
space.

—We have conducted extensive experiments on multi-topic web page catego-
rization and automatic gene expression pattern image annotation tasks to
demonstrate the effectiveness of the proposed formulation.

The rest of this article is organized as follows: We present the framework for
extracting shared subspace in Section 2. The efficient algorithm for computing
the solution is presented in Section 3. We discuss its relationship with existing
formulations in Section 4. In Section 5, the proposed formulation is extended to
the kernel-induced feature space. We report experimental results in Section 6
and conclude this article by discussing further research in Section 7.

Notations. We use n, d, and mto denote the number of training instances, the
data dimensionality, and the number of labels, respectively. The data matrix
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and the label indicator matrix are denoted as X = [x1, . . . , xn]T ∈ IRn×d and
Y ∈ IRn×m, where xi ∈ IRd is the ith instance, and Yi� = 1 if the ith instance has
the �th label, and −1 otherwise.

2. THE PROPOSED FRAMEWORK

We are given a set of input data {xi}n
i=1 ∈ R

d and the class label indicator matrix
Y ∈ R

n×m that encodes the label information, where m and n are the number
of labels and the number of instances, respectively. Following the traditional
supervised learning framework, we learn m functions { f�}m

�=1 from the data that
minimize the following regularized empirical risk:

R
({ f�}m

�=1

) =
m∑

�=1

(
1
n

n∑
i=1

L
(

f�(xi), y�
i

) + μ�( f�)

)
, (1)

where y�
i = Yi�, L is a prescribed loss function, �( f ) is a regularization

functional measuring the smoothness of f , and μ > 0 is the regularization
parameter.

2.1 Problem Formulation

We propose a multi-label learning framework, in which a low-dimensional sub-
space is shared by all labels. The predictive functions in this framework consist
of two parts: one part is contributed from the original data space, and the other
part is derived from the shared subspace as follows:

f�(x) = wT
� x + vT

� �x, (2)

where w� ∈ R
d and v� ∈ R

r are the weight vectors, � ∈ R
r×d is the linear

transformation used to parameterize the shared low-dimensional subspace, and
r is the dimensionality of the shared subspace. The transformation � is common
for all labels, and it has orthonormal rows, that is ��T = I. In this formulation,
the input data are projected onto a low-dimensional subspace by �, and this
low-dimensional projection is combined with the original representation to
produce the final prediction. Note that a similar formulation has been proposed
in Ando and Zhang [2005] to capture the shared predictive structures in multi-
task learning, and our formulation differs from it in several key aspects (see
Section 4.1 for a comparison).

Following the regularization formulation in Equation (1), we propose to esti-
mate the parameters {w�,v�}m

�=1 and � by minimizing the following regularized
empirical risk:

m∑
�=1

(
1
n

n∑
i=1

L
((

w� + �Tv�

)Txi, y�
i

) + α||w�||2 + β||w� + �Tv�||2
)

,

subject to the constraint that ��T = I. Note that in the above formulation,
the first regularization term ||w�||2 controls the amount of information specific
to each label, while the second regularization term ||w� + �Tv�||2 controls the
complexity of the models for each label. By a change of variable, this problem
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can be reformulated equivalently as follows:

min
{u�,v�},�

m∑
�=1

(
1
n

n∑
i=1

L
(
uT

� xi, y�
i

) + α||u� − �Tv�||2 + β||u�||2
)

s. t. ��T = I. (3)

In this article, we consider the least squares loss, that is,

L
(
uT

� xi, y�
i

) = (
uT

� xi − y�
i

)2
.

It has been shown [Fung and Mangasarian 2005; Rifkin and Klautau 2004] that
the least squares loss function is comparable to other loss functions such as the
hinge loss employed in support vector machines (SVM) [Schölkopf and Smola
2002] when appropriate regularization is added. Hence, we get the following
optimization problem:

min
{u�,v�},�

m∑
�=1

(
1
n

‖Xu� − y�‖2 + α||u� − �Tv�||2 + β||u�||2
)

s. t. ��T = I, (4)

where X = [x1, . . . , xn]T ∈ R
n×d is the data matrix, y� = [y�

1, . . . , y�
n]T ∈ R

n. The
formulation in Equation (4) can be expressed compactly as:

min
U,V,�

1
n

‖XU − Y‖2
F + α||U − �TV||2F + β||U||2F

s. t. ��T = I, (5)

where ‖·‖F denotes the Frobenius norm of a matrix [Golub and Van Loan 1996],
U = [u1, . . . ,um], and V = [v1, . . . ,vm].

2.2 The Computation of V∗

We show that the optimal V∗ that solves the optimization problem in
Equation (5) can be expressed in terms of � and U, as summarized in the
following lemma:

LEMMA 2.1. Let U, V, and � be defined as before. Then the optimal V∗ that
solves the optimization problem in Equation (5) is given by V∗ = �U.

PROOF. The only term in Equation (5) that depends on V is ||U − �TV||2F,
which can be expressed equivalently as:

||U − �TV||2F = tr
(
(UT − VT�)(U − �TV)

)
(6)

= tr
(
UTU + VT��TV − 2UT�TV

)
,

where tr(·) denotes the trace of a matrix, and we have used the property that

||A||2F = tr(AT A)

for any matrix A. Taking the derivative of the expression in Equation (6) with
respect to V, and setting it to zero, we obtain

V∗ = �U,
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where we have used the property that ��T = I. This completes the proof of
the lemma.

2.3 The Computation of U∗

It follows from Lemma 2.1 that the objective function in Equation (5) can be
rewritten as:

1
n

‖XU − Y‖2
F + α||U − �TV||2F + β||U||2F

= 1
n

‖XU − Y‖2
F + α||U − �T�U||2F + β||U||2F

= 1
n

‖XU − Y‖2
F + tr

(
UT(

(α + β)I − α�T�
)
U

)
. (7)

Hence, the optimization problem in Equation (5) can be expressed equivalently
as:

min
U,�

1
n

‖XU − Y‖2
F + tr

(
UT(

(α + β)I − α�T�
)
U

)
s. t. ��T = I. (8)

We show that the optimal U∗ can be expressed in terms of �. This is summarized
in the following lemma:

LEMMA 2.2. Let X, Y, U, and � be defined as before. Then the optimal U∗

that solves the optimization problem in Equation (8) can be expressed as:

U∗ = 1
n

(M − α�T�)−1 XTY, (9)

where M is defined as:

M = 1
n

XT X + (α + β)I. (10)

PROOF. Taking the derivative of the objective function in Equation (8) with
respect to U, and setting it to zero, we obtain

U∗ = 1
n

(M − α�T�)−1 XTY, (11)

where M is defined in Equation (10).

2.4 The Computation of �∗

It follows from Lemma 2.2 that we can substitute the expression for U∗ in
Equation (9) into Equation (8) and obtain the following optimization problem
with respect to �:

max
�

1
n2

tr
(
YT X(M − α�T�)−1 XTY

)
(12)

s. t. ��T = I.
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We show in the following theorem that the optimization problem in
Equation (12) can be simplified, and the optimal �∗ can be obtained by solving
a generalized eigenvalue problem.

THEOREM 2.3. Let X, Y, and � be defined as before. Then the optimal �∗ that
solves the optimization problem in Equation (12) can be obtained by solving the
following trace maximization problem:

max
�

tr
(
(�S1�

T)−1�S2�
T)

(13)

s. t. ��T = I,

where S1 and S2 are defined as:

S1 = I − αM−1, (14)

S2 = M−1 XTYYT XM−1, (15)

and M is defined in Equation (10).

PROOF. We need the Sherman-Woodbury-Morrison formula [Golub and Van
Loan 1996] for computing matrix inverse:

(P + ST)−1 = P−1 − P−1S(I + TP−1S)−1TP−1. (16)

It follows from the formula in Equation (16) that

(M − α�T�)−1

= M−1 + αM−1�T(I − α�M−1�T)−1�M−1

= M−1 + αM−1�T(�(I − αM−1)�T)−1�M−1, (17)

where the last equality follows since ��T = I. By substituting the expression
in Equation (17) into the optimization problem in Equation (12), we obtain the
following problem:

max
�

tr(YT XM−1�T(�(I − αM−1)�T)−1�M−1 XTY)

s. t. ��T = I,

where we have omitted the term YT XM−1 XTY since it is independent of �. By
using the property that tr(AB) = tr(BA) for any two matrices A and B, and
noticing the definitions of S1 and S2 in Equations (14) and (15), respectively,
we prove this theorem.

Let Z = [z1, . . . , zr] be the matrix consisting of the top r eigenvectors cor-
responding to the largest r nonzero eigenvalues of the generalized eigenvalue
problem: S1z = λS2z. To ensure the constraint ��T = I, the QR decomposi-
tion can be employed. In particular, let Z = Zq Zr be the QR decomposition of
Z, where Zq has orthonormal columns and Zr is upper triangular. It is easy
to verify [Ye 2005] that the objective function in Equation (13) is invariant of
any nonsingular transformation, that is, Q and NQ achieve the same objective
value for any nonsingular matrix N ∈ IRr×r. It follows that the optimal Q∗

solving Equation (13) is given by Q∗ = ZT
q . Note that S1 is positive definite (see

Equation (19), thus Z can also be obtained by computing the top eigenvectors
of S−1

1 S2.
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3. AN EFFICIENT ALGORITHM

From the discussions in the last section, the optimal �∗ is given by the eigenvec-
tors of S−1

1 S2 ∈ R
d×d corresponding to the r largest eigenvalues. When the data

dimensionality, that is, d, is small, the eigenvectors of S−1
1 S2 can be computed

directly. However, when d is large, direct eigendecomposition is computation-
ally expensive. In this section, we show how we can compute the eigenvectors
efficiently for this case.

3.1 Reformulation of S−1
1 S2

It follows from the Sherman-Woodbury-Morrison formula in Equation (16) that

M−1 = 1
α + β

I − 1
n(α + β)2

XT
(

I + 1
n(α + β)

XXT
)−1

X

= 1
α + β

I − 1
α + β

XT (
n(α + β)I + XXT)−1

X. (18)

Hence, we have

I − αM−1 = β

α + β
I + α

α + β
XT(

n(α + β
)
I + XXT)−1 X, (19)

which is positive definite when β > 0.
It follows from the definitions of M, S1, and S2 in Equations (10) (14), and

(15) that

S−1
1 S2 = (I − αM−1)−1M−1 XTYYT XM−1

= (M − αI)−1 XTYYT XM−1 (20)

=
(

1
n

XT X + β I
)−1

XTYYT X
(

1
n

XT X + (α + β)I
)−1

.

Let

X = U�VT (21)

be the singular value decomposition (SVD) [Golub and Van Loan 1996] of X,
where U ∈ IRn×n and V ∈ IRd×d are orthogonal,

� = diag(�t, 0) ∈ IRn×d

is diagonal, and t = rank(X). Let U = [U1,U2], where U1 ∈ IRn×t, U2 ∈ IRn×(n−t),
V = [V1, V2], V1 ∈ IRd×t, V2 ∈ IRd×(d−t), and �t consists of the first t rows and the
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first t columns of �. Then we have

S−1
1 S2 = V1

(
1
n

�2
t + β I

)−1

VT
1 XTYYT X

(
1
n

XT X + (α + β)I
)−1

+ 1
β

V2 I−1VT
2 XTYYT X

(
1
n

XT X + (α + β)I
)−1

= V1

(
1
n

�2
t + β I

)−1

VT
1 XTYYT X

(
1
n

XT X + (α + β)I
)−1

= V1

(
1
n

�2
t + β I

)−1

VT
1 XTYYT XV1

(
1
n

�2
t + (α + β)I

)−1

VT
1

= V1

(
1
n

�2
t + β I

)−1

�tUT
1 YYTU1�t

(
1
n

�2
t + (α + β)I

)−1

VT
1 .

The second and the third equalities follow since the columns of V2 are in the
null space of X, that is,

XV2 = 0.

3.2 Diagonalization of S−1
1 S2

Define three diagonal matrices D1, D2, and D as follows:

D1 =
(

1
n

�2
t + β I

)−1

�t ∈ R
t×t, (22)

D2 = �t

(
1
n

�2
t + (α + β)I

)−1

∈ R
t×t, (23)

D = (
D1 D−1

2

) 1
2 ∈ R

t×t. (24)

Then we have

S−1
1 S2 = V1 D1UT

1 YYTU1 D2VT
1

= V1 D(D−1 D1)UT
1 YYTU1(D2 D)D−1VT

1

= V1 DD̃UT
1 YYTU1 D̃D−1VT

1 ,

where

D̃ = D−1 D1 = D2 D. (25)

Denote C = YTU1 D̃ ∈ R
m×t and let

C = P1	PT
2 (26)

be the SVD of C where P1 ∈ R
m×m and P2 ∈ R

t×t are orthogonal, and 	 ∈ R
m×t

is diagonal. Then

S−1
1 S2 = V1 DP2	

T	PT
2 D−1VT

1

= V1 DP2	̃PT
2 D−1VT

1 , (27)

where 	̃ = 	T	 ∈ R
t×t.
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Table I.
Summary of relevant matrices. The size, the

computation required, and the associated
complexity of each relevant matrix are Listed

Matrix Size Computation Complexity
X n × d SVD O(dn2)
C m× t SVD O(tm2)
V1 DP2 d × t QR O(dt2)

3.3 Algorithms for Computing �∗ and U∗

We can observe that Equation (27) gives the eigen-decomposition of S−1
1 S2 corre-

sponding to nonzero eigenvalues. Hence, the eigenvectors of S−1
1 S2 correspond-

ing to nonzero eigenvalues are given by the columns of V1 DP2. The algorithm for
computing the optimal �∗ for high-dimensional data is summarized as follows:

—Compute the SVD of X as X = U�VT = U1�tVT
1 .

—Compute D1, D2, D, and D̃ as in Equations. (22), (23), (24) and (25), respec-
tively.

—Compute the SVD of C = YTU1 D̃ as C = P1	PT
2 .

—Compute the QR decomposition of V1 DP2 as V1 DP2 = QR.
—The rows of the optimal �∗ are given by the first r columns of the matrix Q.

After obtaining �∗, we need to compute the optimal U∗ given by Equation (9).
Note that the matrix M ∈ IRd×d is involved in Equation (9), and hence it is
expensive to compute U∗ directly for high-dimensional data. More specifically,
we need to make use of the expressions in Equations (17), (18), and (19) so that
explicit formations of the matrices M and M−1 are avoided.

The SVD of X in the first step takes O(dn2) time assuming d > n. The size of
C is m× t where m is the number of labels and t = rank(X). Hence the SVD of C
in the third step takes O(tm2) time assuming t > m. The QR decomposition in
the fourth step takes O(dt2) time. Typically, m and t are both small. Thus, the
cost of the proposed algorithm for computing �∗ is dominated by the cost for
computing the SVD of X. A summary of relevant matrices and their associated
computational complexities is listed in Table I.

4. RELATIONSHIP TO EXISTING ALGORITHMS

In this section, we show that the proposed formulation includes several well-
known algorithms as special cases. We begin by discussing related work.

4.1 Related Work

4.1.1 Dimensionality Reduction. Canonical correlation analysis (CCA)
[Hotelling 1936] and partial least squares (PLS) [Wold 1966; Arenas-Garcı́a
et al. 2007] are classical techniques for modeling relations between sets of
observed variables. They both compute low-dimensional embedding of sets of
variables simultaneously. Their main difference is that CCA maximizes the
correlations between variables in the embedded space, while PLS maximizes
their covariances. One popular use of CCA and PLS is for supervised learning,

ACM Transactions on Knowledge Discovery from Data, Vol. 4, No. 2, Article 8, Publication date: May 2010.



A Shared-Subspace Learning Framework for Multi-Label Classification • 8:11

in which one set of variables are derived from the data and another set are
derived from the class labels [Sun et al. 2008b, 2009]. In this setting, the data
can be projected onto a lower-dimensional space directed by the label infor-
mation. Such formulation is particularly appealing in the context of dimen-
sionality reduction for multi-label data. When applied to multi-class problems,
CCA reduces to the well-known linear discriminant analysis (LDA) formulation
[Fukunaga 1990] in which a projection is obtained by maximizing the ratio of
interclass distance to intraclass distance.

4.1.2 Multi-Task Learning. In Ando and Zhang [2005], a similar formula-
tion has been proposed for multi-task learning. In this formulation, the input
data for different tasks can be different, and the following optimization problem
is involved:

min
{u�,v�},�

m∑
�=1

(
1
n�

n�∑
i=1

L
(
uT

� x�
i , y�

i

) + α||u� − �Tv�||2
)

s. t. ��T = I, (28)

where x�
i is the ith instance in the �th task and n� is the number of instances

in the �th task. It has been shown [Ando and Zhang 2005] that the resulting
optimization problem is non-convex even for convex loss functions. Hence, an
iterative procedure called the alternating structure optimization (ASO) algo-
rithm is proposed to compute a locally optimal solution. A similar idea of shar-
ing parts of the model parameters among multiple tasks has been explored in
the Bayesian framework [Bakker and Heskes 2003].

4.1.3 Multi-Class Learning. Formulation for extracting shared structures
in multi-class classification has been proposed recently [Amit et al. 2007].
In this formulation, a low-rank transformation is computed to uncover the
shared structures in multi-class classification. The final prediction is solely
based on the low-dimensional representations in the dimensionality-reduced
space. Moreover, the low-rank constraint is nonconvex, and it is first relaxed to
the convex trace norm constraint. The relaxed problem can be formulated as
a semidefinite program that is expensive to solve. Hence, the gradient-based
optimization technique is employed to solve the relaxed problem.

4.2 Connections with Existing Formulations

The formulation proposed in Section 2 includes several existing algorithms
as special cases. In particular, by setting the regularization parameters α

and β in Equation (5) to different values, we obtain several well-known
algorithms.

—α = 0: When the regularization parameter α = 0, it can be seen from
Equation (5) that this formulation is equivalent to the classical ridge re-
gression [Hoerl and Kennard 1970]. In ridge regression, different labels are
decoupled, and the solution to each label can be obtained independently by
solving a system of linear equations. In this case, no shared information is
exploited among different labels.
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—β = 0: When the regularization parameter β = 0, only the task-specific
parameters {w�}m

�=1 are regularized. Thus, the proposed formulation reduces
to the one in Ando and Zhang [2005] in the special case where the input data
are the same for all tasks.

—α = +∞: It can be seen from Equation (20) that when α tends to infinity, the
following holds: (

1
n

XT X + (α + β)I
)−1

→ ε I,

for some small positive ε. Hence, the eigenvectors of S−1
1 S2 approach the

eigenvectors of the matrix(
1
n

XT X + β I
)−1

XTYYT X. (29)

This formulation is the same as the problem solved by orthonormalized PLS
[Arenas-Garcı́a et al. 2007]. When the matrix YYT in Equation (29) is re-
placed by Y(YTY)−1YT, this problem reduces to CCA. In the special case of
multi-class problems, where each data point belongs to one class only, we
define the class indicator matrix Y as follows [Ye 2007]: yij = √

n/nj − √
nj/n

if yi = j, and −√
nj/n otherwise, where nj is the sample size of the j-th class.

It is easy to verify that 1
n XT X and XTYYT X correspond to the total scatter

and interclass scatter matrices used in LDA. Thus, the optimal � coincides
with the optimal transformation computed by LDA.

—β = +∞: When β tends to infinity, the eigenvectors of S−1
1 S2 are given by the

eigenvectors of the matrix XTYYT X, which is the interclass scatter matrix
used in LDA. In this case, the proposed formulation is closely related to the
orthogonal centroid method (OCM) [Park et al. 2003] in which the optimal
transformation is given by the eigenvectors of the inter-class scatter matrix
corresponding to the largest eigenvalues.

5. A FEATURE SPACE FORMULATION

In this section, we show that the proposed formulation can be extended to
the kernel-induced feature space. Let �(X) = [�(x1), . . . , �(xn)]T be the data
matrix in the feature space induced by the feature mapping �. It follows from
the Representer Theorem [Schölkopf and Smola 2002] that

U = �(X)TA, (30)

� = BT�(X), (31)

for some matrices A ∈ IRn×m and B ∈ IRn×r. The feature space formulation of
the proposed framework is summarized in the following theorem:

THEOREM 5.1. Let A, B, and Y be defined as before, and let K = �(X)�(X)T

be the kernel matrix. Then the optimal B∗ in Equation (31) can be obtained by
solving the following problem:

max
B

tr
(
(BTŜ1 B)−1 BTŜ2 B

)
(32)

s. t. BTKB = I,
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where N, Ŝ1, and Ŝ2 are defined as

N = 1
n

KK + (α + β)K, (33)

Ŝ1 = K − αKN−1K, (34)

Ŝ2 = KN−1KYYT KN−1K. (35)

PROOF. We first consider the term ||U − �TV||2F in Equation (5), which can
be expressed in the feature space as

tr
(
AT K A+ VT BT KBV − 2AT KBV

)
. (36)

Taking the derivative of the expression in Equation (36) with respect to V, and
setting it to zero, we obtain

V = BT K A. (37)

Substituting this expression for V into Equation (5), and expressing all terms
in the feature space, we get the following optimization problem with respect to
A and B:

min
A,B

1
n

‖K A− Y‖2
F + tr

(
AT(

(α + β)K − αKBBT K
)
A
)

s. t. BT KB = I. (38)

Taking the derivative of the objective function in Equation (38) with respect to
A, and setting it to zero, we obtain the following expression for A:

A = 1
n

(
N − αKBBT K

)−1KY, (39)

where N is defined in Equation (33). Substituting this expression for A into the
objective function in Equation (38), we get the following optimization problem
with respect to B:

max
B

1
n2

tr
(
YT K(N − αKBBT K)−1KY

)
s. t. BTKB = I. (40)

It follows from the Sherman-Woodbury-Morrison formula in Equation (16) that(
N − αKBBT K

)−1 = N−1 + αN−1KB
(
BT(K − αKN−1K)B

)−1 BT KN−1.

This theorem can be proved by noticing the definitions of S̃1 and S̃2 in
Equations (34) and (35), respectively.

It follows from the Sherman-Woodbury-Morrison formula in Equation (16)
that

N−1 = 1
α + β

K−1 − 1
α + β

(n(α + β)I + K)−1. (41)

Hence we have

K − αKN−1K = β

α + β
K + α

α + β
K(n(α + β)I + K)−1K.

ACM Transactions on Knowledge Discovery from Data, Vol. 4, No. 2, Article 8, Publication date: May 2010.



8:14 • S. Ji et al.

It follows that

Ŝ−1
1 Ŝ2 = (K − αKN−1K)−1KN−1KYYT KN−1K

= (N − αK)−1KYYT KN−1K

=
(

1
n

KK + βK
)−1

KYYT K
(

1
n

K + (α + β)I
)−1

.

Similar to the discussion in Section 4, the connections between this formulation
and related algorithms in the kernel-induced feature space can also be derived.

6. EXPERIMENTAL EVALUATION

In this section, we evaluate the effectiveness of the proposed formulations in
comparison with representative algorithms. The linear formulation is evalu-
ated on eleven multi-topic web page categorization problems, and the kernel
formulation is evaluated on a series of gene expression pattern image annota-
tion tasks.

6.1 Experimental Setup

We use area under the receiver operating characteristic (ROC) curve, called
AUC, and the F1 score as the performance measure. To measure the perfor-
mance across multiple labels using the F1 score, we use both the macro F1
and the micro F1 scores [Lewis et al. 2004; Yang and Pedersen 1997]. The F1
score depends on the threshold values of the classification models. It was shown
recently [Fan and Lin 2007] that tuning the threshold based on F1 score on
the training data can significantly improve performance. Hence, we tune the
threshold value of each model based on the training data. Indeed, results show
that threshold tuning sometimes outperforms classifiers that are trained to
optimize the F1 score directly.

We evaluate the performance of the proposed linear and kernel formulations
by comparing their performance with that of other five relevant methods. Pa-
rameters of all the methods are tuned using 5-fold cross-validation based on
the F1 score. The setup is summarized as follows:

—MLLS. The proposed multi-label formulation based on the least squares loss.
The regularization parameters α and β are tuned using 5-fold double cross-
validation from the candidate set [0, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1].
The performance of the proposed formulation is not sensitive to the dimen-
sionality of the shared subspace r as long as it is not too small. We fix it to
5 × �(m− 1)/5	 in the experiments where m is the number of labels.

—CCA+Ridge. CCA is applied first to reduce the data dimensionality be-
fore ridge regression is applied. The regularization parameters for CCA
and ridge regression are tuned on the sets {10i|i = −6,−5, . . . , 1} and
{10i|i = −6,−5, . . . , 0}, respectively.

—CCA+SVM. CCA is applied first to reduce the data dimensionality before
linear SVM is applied. The regularization parameter for CCA is tuned on
the set {10i|i = −6,−5, . . . , 1}, and the C value for SVM is tuned on the set
{10i|i = −4,−3, . . . , 4, 5}.
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—SVM. Linear SVM is applied on each label using the one-against-rest scheme,
and the C value for each SVM is tuned on the set {10i|i = −5,−4, . . . , 4, 5}.

—ASOSVM. The alternating structural optimization (ASO) algorithm proposed
in [Ando and Zhang 2005] with the hinge loss as described in Equation (28).
The regularization parameter α is tuned on the set {10i|i = −4,−3, . . . , 2, 3}.
The tolerance parameter for testing convergence is set to 10−3, and the maxi-
mum number of iterations for ASO is set to 100. This problem is solved using
the MOSEK package [Andersen and Andersen 2000].

—SVMperf. The SVM for multivariate performance measures proposed in
[Joachims 2005, 2006]. We set C = 5000, as it leads to good overall per-
formance.

The SVM problems are solved using the LIBSVM [Chang and Lin 2001]
software package. All the codes and the web page categorization datasets
used for the experiments are available from the supplemental web site
(http://www.public.asu.edu/∼sji03/subspace).

6.2 Web Page Categorization

The multi-topic web page categorization datasets were described in Ueda and
Saito [2002a, 2002b] and Kazawa et al. [2005], and they were compiled from 11
top-level categories in the “yahoo.com” domain. The Web pages collected from
each top-level category form a data set. The top-level categories are further
divided into a number of second-level subcategories, and those subcategories
form the topics to be categorized in each data set. Note that the 11 multi-topic
categorization problems are compiled and solved independently as in Ueda and
Saito [2002a]. We preprocess the datasets by removing topics with less than
100 web pages, words occurring less than 5 times, and Web pages without
topics. We use the TF-IDF encoding to represent Web pages, and all Web pages
are normalized to unit length. The statistics of all datasets are summarized in
Table II.

6.2.1 Performance Evaluation. We randomly sample 1000 datapoints from
each dataset as training data (each label is guaranteed to appear in at least
one datapoint), and the remaining datapoints are used as test data. For the
alternating structure optimization (ASO) algorithm [Ando and Zhang 2005]
which is computationally expensive, we repeat this random sampling 10 times
to generate 10 random training/test partitions. For all other methods, this ran-
dom partitioning is repeated 30 times. Tables III and IV report the averaged
performance of the six methods in terms of AUC, macro F1, and micro F1. We
can observe that the proposed formulation achieves the highest AUC on seven
datasets, while ASOSVM achieves the highest AUC on the other four datasets.
In terms of the macro F1 score, the proposed formulation achieves the highest
performance on ten datasets while ASOSVM achieves the highest performance
on the remaining one. In terms of the micro F1 score, the proposed formulation
outperforms other methods on all datasets. In general, methods that can cap-
ture the correlation among different labels, such as MLLS and CCA+SVM, tend
to yield higher performance than those that reduce the multi-label problem to
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Table II.
Statistics of the Yahoo! datasets. m, d, and N denote the
number of labels, the data dimensionality, and the total

number of instance, respectively, in the dataset after
preprocessing. “MaxNPI”/“MinNPI” denotes the

maximum/minimum number of positive instances for each
topic (label)

Dataset m d N MaxNPI MinNPI
Arts 19 17973 7441 1838 104
Business 17 16621 9968 8648 110
Computers 23 25259 12371 6559 108
Education 14 20782 11817 3738 127
Entertainment 14 27435 12691 3687 221
Health 14 18430 9109 4703 114
Recreation 18 25095 12797 2534 169
Reference 15 26397 7929 3782 156
Science 22 24002 6345 1548 102
Social 21 32492 11914 5148 104
Society 21 29189 14507 7193 113

Table III.
Summary of performance for the six compared methods on the first six Yahoo! Datasets in
terms of AUC (top section), macro F1 (middle section), and micro F1 (bottom section). All

parameters of the six methods are uned by cross-validation, and the averaged
performance over 10 random sampling of training instances for ASOSVM and 30 random

sampling for all other methods is reported. The highest performance is highlighted for
each dataSet

Dataset Arts Business Computer Education Entertainment Health

MLLS 0.7611 0.8313 0.7912 0.7771 0.8282 0.8539
CCA+Ridge 0.7573 0.8253 0.7893 0.7568 0.8044 0.8557
CCA+SVM 0.7393 0.8003 0.7717 0.7420 0.7749 0.8450
SVM 0.7425 0.7973 0.7641 0.7548 0.8045 0.8439
ASOSVM 0.7678 0.8261 0.7847 0.7446 0.8207 0.8621
SVMperf 0.7599 0.8185 0.7846 0.7710 0.8234 0.8554

MLLS 0.3572 0.4026 0.3093 0.4044 0.4881 0.5971
CCA+Ridge 0.3176 0.3896 0.2940 0.3640 0.4249 0.5728
CCA+SVM 0.3217 0.3918 0.3006 0.3681 0.4319 0.5689
SVM 0.3374 0.3776 0.2961 0.3819 0.4653 0.5657
ASOSVM 0.3568 0.3736 0.2873 0.3262 0.4344 0.5814
SVMperf 0.3361 0.3211 0.2579 0.3777 0.4656 0.4953

MLLS 0.4700 0.7618 0.5529 0.4999 0.5844 0.6816
CCA+Ridge 0.4530 0.7596 0.5527 0.4498 0.5413 0.6775
CCA+SVM 0.4479 0.7434 0.5392 0.4296 0.5100 0.6646
SVM 0.4134 0.7150 0.4848 0.4560 0.5419 0.6349
ASOSVM 0.4449 0.7384 0.4305 0.4322 0.5605 0.6754
SVMperf 0.4087 0.5892 0.3957 0.4378 0.5336 0.5997

a set of independent binary-class problems such as SVM. This shows that in-
corporation of the correlation information among different labels can improve
performance, and the proposed formulation based on the least squares loss is
effective in exploiting such information.
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Table IV.
Summary of performance for the six compared methods on the last five
Yahoo! datasets. See the caption of Table III for detailed explanations

Dataset Recreation Reference Science Social Society

MLLS 0.8126 0.8223 0.8287 0.8320 0.7276
CCA+Ridge 0.8113 0.8200 0.8099 0.8225 0.7216
CCA+SVM 0.7946 0.7604 0.7790 0.7627 0.7054
SVM 0.7922 0.8037 0.8025 0.7869 0.7101
ASOSVM 0.8123 0.8340 0.8073 0.7942 0.7321
SVMperf 0.8109 0.8202 0.8236 0.8240 0.7229

MLLS 0.4478 0.4066 0.4241 0.3637 0.3256
CCA+Ridge 0.4227 0.3483 0.3530 0.3303 0.2992
CCA+SVM 0.4289 0.3404 0.3660 0.3360 0.3073
SVM 0.4254 0.3848 0.3976 0.3444 0.3115
ASOSVM 0.4136 0.4116 0.3397 0.3017 0.3023
SVMperf 0.4184 0.3680 0.3673 0.2978 0.3059

MLLS 0.5287 0.6016 0.5210 0.6649 0.4853
CCA+Ridge 0.5197 0.5535 0.4719 0.6545 0.4813
CCA+SVM 0.5134 0.4435 0.4478 0.5688 0.4639
SVM 0.4753 0.5306 0.4565 0.5946 0.3971
ASOSVM 0.4976 0.5580 0.4564 0.6492 0.4639
SVMperf 0.4620 0.4733 0.4155 0.4638 0.4034

Table V.
The p-values obtained by performing wilcoxon signed Rank test to assess the statistical

significance of performance differences between MLLS and Three other methods in terms of
AUC (top section), macro F1 (middle section), and micro F1 (bottom section) on the first six

Yahoo! dataSets. A p-value of smaller than 0.05 is usually considered as indication of
statistically significant difference

Dataset Arts Business Computer Education Entertainment Health

MLLS v.s. CCA+Ridge 2.80e-1 5.31e-3 2.18e-2 9.31e-6 1.79e-5 4.16e-1
MLLS v.s. CCA+SVM 7.51e-5 2.35e-6 7.15e-4 2.12e-6 1.73e-6 2.25e-3
MLLS v.s. SVM 3.11e-5 1.92e-6 4.86e-5 2.35e-6 1.36e-5 4.44e-5

MLLS v.s. CCA+Ridge 1.73e-6 2.22e-4 1.19e-3 1.92e-6 1.73e-6 3.06e-4
MLLS v.s. CCA+SVM 1.73e-6 7.71e-4 2.18e-2 2.35e-6 1.73e-6 5.75e-6
MLLS v.s. SVM 4.72e-6 1.63e-5 1.47e-2 5.21e-6 3.18e-6 2.60e-6

MLLS v.s. CCA+Ridge 2.35e-6 1.71e-1 7.34e-1 1.73e-6 1.73e-6 9.36e-2
MLLS v.s. CCA+SVM 4.72e-6 4.86e-5 1.14e-4 1.73e-6 1.92e-6 3.16e-3
MLLS v.s. SVM 1.73e-6 1.73e-6 1.73e-6 1.73e-6 1.73e-6 1.73e-6

To assess the statistical significance of performance differences between
MLLS and other compared methods, we perform Wilcoxon signed rank test
based on the performance on 30 random trials, and the p-values are reported
in Tables V and VI. A p-value of smaller than 0.05 is usually considered as
indication of performance difference. We can observe that most of the perfor-
mance differences are statistically significant. Note that ASOSVM and SVMperf

are computationally expensive, and they require excessive amount of computa-
tional time to obtain the results on all 30 random trials, which is necessary for
the purpose of statistical test. Hence, the test results for ASOSVM and SVMperf

are omitted. However, we can observe that the performance of ASOSVM and
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Table VI.
The p-values obtained by performing wilcoxon signed rank test to assess the

statistical significance of performance differences between MLLS and three other
methods in terms of AUC (top section), macro F1 (middle section), and micro F1

(bottom section) on the last five Yahoo! dataSets. A p-value of smaller than 0.05 is
usually considered as indication of statistically significant difference

Dataset Recreation Reference Science Social Society

MLLS v.s. CCA+Ridge 5.98e-2 5.03e-1 2.22e-4 1.03e-3 3.28e-1
MLLS v.s. CCA+SVM 3.58e-4 1.92e-6 2.35e-6 1.73e-6 3.72e-5
MLLS v.s. SVM 5.79e-5 3.88e-4 3.88e-6 1.92e-6 6.31e-5

MLLS v.s. CCA+Ridge 3.11e-5 1.73e-6 1.73e-6 2.87e-6 1.73e-6
MLLS v.s. CCA+SVM 3.06e-4 1.73e-6 1.73e-6 2.35e-6 3.88e-6
MLLS v.s. SVM 1.47e-4 4.44e-5 3.88e-6 3.06e-4 4.07e-5

MLLS v.s. CCA+Ridge 7.15e-4 1.73e-6 1.73e-6 3.72e-5 4.65e-1
MLLS v.s. CCA+SVM 9.62e-4 1.92e-6 1.73e-6 1.73e-6 3.50e-2
MLLS v.s. SVM 1.73e-6 1.73e-6 1.73e-6 1.73e-6 1.73e-6

SVMperf is usually lower than that of other methods, and hence we expect their
performance differences with MLLS are statistically significant.

6.2.2 Scalability Evaluation. We evaluate the scalability of the proposed
multi-label formulation on all the Yahoo! datasets, and the results for 8 of
the 11 datasets are presented in Figures 1 and 2. A similar trend can be
observed from other datasets, and their results are omitted. In particular, we
increase the number of training samples on the datasets gradually, and record
the computation time of MLLS, SVM, and ASOSVM. The training time for a
fixed parameter setting and the total time for parameter tuning using cross-
validation are plotted in Figures 1 and 2. We can observe that SVM is the fastest
and ASOSVM is the slowest among the three compared algorithms. Moreover,
the difference between MLLS and SVM is small. The computational cost of
the proposed formulation is dominated by the cost of SVD computation on the
data matrix X, and it is independent of the number of labels. In contrast,
the computational costs of SVM and ASOSVM depend on the number of labels.
Hence, the difference between SVM and MLLS tends to be smaller on datasets
with a larger number of labels. Note that in MLLS, the two regularization
parameters α and β are tuned using double cross-validation. However, the SVD
on X needs to be computed only once irrespective of the size of the candidate
sets for α and β. This experiment also shows that the running time of ASOSVM

may fluctuate as the number of training instances increases. This may be due
to the fact that the convergence rate of the ASOSVM algorithm depends on the
initialization.

6.2.3 Sensitivity Analysis. We conduct experiments to evaluate the sensi-
tivity of the proposed formulation to the values of the regularization parameters
α and β. We randomly sample 1000 datapoints from each of the three datasets:
Arts, Recreation, and Science, and the averaged macro F1 scores over 5-fold
cross-validation for different values of α and β are depicted in Figure 3. We
can observe that the highest performance on all three datasets is achieved at
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Fig. 1. Comparison of computation time for MLLS, SVM, and ASOSVM on four Yahoo! datasets.
The computation time for a fixed parameter setting and that for parameter tuning using cross-
validation are both depicted for each dataset. See the text for more details.

ACM Transactions on Knowledge Discovery from Data, Vol. 4, No. 2, Article 8, Publication date: May 2010.



8:20 • S. Ji et al.

Fig. 2. Comparison of computation time for MLLS, SVM, and ASOSVM on four Yahoo! datasets.
The computation time for a fixed parameter setting and that for parameter tuning using cross-
validation are both depicted for each dataset. See the text for more details.
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Fig. 3. The change of macro F1 scores as the regularization parameters α and β vary in the range
[0, 10−5, 10−4, 10−3, 10−2, 10−1, 1, 10, 100] for the Arts (left panel), Recreation (middle panel), and
Science (right panel) datasets.

some intermediate values of α and β. Moreover, this experiment shows that the
performance of the proposed multi-label formulation is sensitive to the values
of the regularization parameters. Note that the parameter tuning time of the
proposed formulation does not depend on the size of the candidate sets directly,
since the computational cost is dominated by that of the SVD of X which needs
to be performed only once. Hence, a large candidate set for α and β can be
employed in practice.

6.3 Gene Expression Pattern Image Annotation

The gene expression pattern images of Drosophila document the spatial
and temporal changes of gene expression during Drosophila embryogene-
sis [Tomancak et al. 2002; Tomancak et al. 2007] (Figure 4). Comparative anal-
ysis of such images can potentially reveal new genetic interactions, and yield in-
sights into the complex regulatory networks governing embryonic development
[Kumar et al. 2002]. To facilitate pattern comparison and searching, groups of
images are annotated with a variable number of anatomical and developmen-
tal ontology terms using a controlled vocabulary in the Berkeley Drosophila
Genome Project (BDGP) high-throughput study [Tomancak et al. 2002, 2007].
Since the number of available images produced by high-throughput technolo-
gies is rapidly increasing, it is imperative to design computational methods to
automate this task [Ji et al. 2008, 2009a, 2009b; Li et al. 2009].

6.3.1 Kernel Matrix Construction. In Ji et al. [2008], a novel computational
framework based on kernel methods is proposed to annotate gene expression
pattern images automatically. In this framework, invariant features are first
extracted from regular patches on each image in a group, resulting in a set of
feature vectors for each image group [Mikolajczyk and Schmid 2005]. Note that
although the number of local features extracted from each image is the same,
the number of features extracted from different image groups may be different,
since the number of images in each group may be different. The authors then
propose to apply the vocabulary-guided pyramid match algorithm [Grauman
and Darrell 2007, 2006] to construct kernels between groups of images based on
the extracted features. A total of nine local descriptors are applied on regular
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Fig. 4. Sample image groups and the associated terms in the FlyExpress database
(http://www.flyexpress.net) for the segmentation gene engrailed in stage ranges 4–6, 7–8, and 9–10.

grids of 16 and 32 pixels in [Ji et al. 2008], resulting in 18 kernel matrices.
In addition, five kernels are also constructed using global features computed
from raw pixel values and Gabor filters. Since it has been shown [Ji et al. 2008]
that kernels constructed from global descriptors yield lower performance than
those constructed from local descriptors, we do not use these five kernels in
this paper.

Motivated by the observation that integration of multiple feature types usu-
ally yields improved performance [Zhang et al. 2007], a multiple kernel learning
formulation is proposed in [Ji et al. 2008] to combine the multiple candidate
kernel matrices. In this experiment, we do not focus on multiple kernel learn-
ing. Instead, we combine the 18 kernels constructed from local descriptors in
[Ji et al. 2008] with a uniform weight, as this strategy generates reasonably
good kernels in practice [Tang et al. 2009]. The integrated kernel matrix is
used to evaluate the feature space formulation proposed in Section 5.

6.3.2 Performance Evaluation. We use a collection of gene expression pat-
tern images obtained from the FlyExpress database (http://www.flyexpress.
net/) in the experiments. In particular, we select a number of terms from the
FlyExpress database and extract a certain number of image groups annotated
with at least one of the selected terms in the experiments. The number of
terms used are 20, 30, 40, 50, and 60, and the number of image groups used
is 1000 in the experiments. The extracted datasets are randomly partitioned
into training and test sets using different ratios (3:7, 4:6, 5:5, and 6:4) for each
label. The combination of five different numbers of terms and four different
ratios results in a total of twenty sets of data. Similar to the setup on the Web
page categorization task, the random partitioning of training and test sets is
repeated 10 times for ASOSVM and 30 times for all other methods, and the av-
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Table VII.
Summary of performance for the six compared methods on the gene expression pattern image

datasets in terms of AUC (top section), macro F1 (middle section), and micro F1 (bottom section).
All parameters of the six methods are tuned by cross-validation, and the averaged performance

over 10 random sampling of training instances for ASOSVM and 30 random sampling for all other
methods is reported. ‘ratio” denotes the proportion of data used for training for each label. The

highest performance is highlighted for each dataset

# of Terms 20 30 40 50 60
Ratio 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4

MLLS 0.7778 0.7826 0.8307 0.8281 0.8312 0.7908 0.8058 0.8383 0.8395 0.8425
CCA+Ridge 0.7793 0.7943 0.8245 0.8249 0.8222 0.7925 0.8035 0.8376 0.8142 0.8311
CCA+SVM 0.7639 0.7581 0.7973 0.7909 0.7946 0.7764 0.7765 0.8110 0.8026 0.8030
SVM 0.7611 0.7741 0.8086 0.8005 0.8058 0.7700 0.7814 0.8139 0.8127 0.8149
ASOSVM 0.7591 0.7706 0.8034 0.8064 0.7992 0.7629 0.7746 0.8127 0.8140 0.8093

MLLS 0.4577 0.4005 0.4367 0.4057 0.3729 0.4690 0.4201 0.4297 0.4223 0.4034
CCA+Ridge 0.4578 0.4159 0.4344 0.3964 0.3807 0.4697 0.4244 0.4351 0.4070 0.3957
CCA+SVM 0.4481 0.3943 0.4244 0.3887 0.3720 0.4596 0.4089 0.4406 0.4045 0.3879
SVM 0.4444 0.4090 0.4084 0.3838 0.3653 0.4547 0.4138 0.4206 0.3998 0.3811
ASOSVM 0.4432 0.4068 0.4003 0.3683 0.3507 0.4554 0.4135 0.4139 0.3917 0.3692

MLLS 0.4923 0.4295 0.4626 0.4422 0.4133 0.5022 0.4515 0.4474 0.4536 0.4406
CCA+Ridge 0.4925 0.4500 0.4590 0.4318 0.4236 0.5026 0.4552 0.4548 0.4364 0.4321
CCA+SVM 0.4829 0.4337 0.4463 0.4165 0.4021 0.4937 0.4428 0.4573 0.4274 0.4134
SVM 0.4679 0.4245 0.4370 0.3943 0.3881 0.4700 0.4367 0.4293 0.4131 0.3975
ASOSVM 0.4594 0.4203 0.4241 0.4088 0.3944 0.4644 0.4236 0.4314 0.4224 0.4022

eraged performance in terms of AUC, macro F1, and micro F1 is summarized
in Tables VII and VIII.

We can observe from Tables VII and VIII that the proposed formulation
achieves the highest AUC on seventeen out of the twenty sets of data. On the
other three datasets, CCA+Ridge achieves the highest AUC. In terms of the
macro F1 score, the proposed formulation and CCA+Ridge achieve the highest
performance on twelve and eight datasets, respectively. In terms of the micro
F1 score, the proposed formulation outperforms other five compared methods
on ten datasets, while CCA+Ridge and CCA+SVM outperform other methods
on nine and one datasets, respectively. Similar to the results observed on the
web page categorization tasks, methods that incorporate the correlation among
different labels consistently outperform those that reduce the multi-label prob-
lem into multiple independent binary-class problems. This again shows that the
performance for multi-label problems can be improved by exploiting the corre-
lation information among different labels. We can also observe from Tables VII
and VIII that the performance difference between the proposed formulation and
that of SVM tends to be larger when the number of labels increases. This may be
due to the fact that when the number of labels is small, the correlation among
different labels is weak and reducing the problem into independent binary-class
problems may not compromise the performance significantly. However, when
the number of labels is large, ignorance of the correlation information com-
promises the performance significantly. To assess the statistical significance
of performance differences between MLLS and other compared methods, we
perform Wilcoxon signed rank test based on the performance on 30 random
trials, and the p-values are reported in Tables IX and X. A p-value of smaller
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Table VIII.
Summary of performance for the six compared methods on the gene expression pattern image
datasets. The setup is the same as that reported in Table VII except that the training to test

instance ratio are 5:5 and 6:4 in this table. See the caption of Table VII for detailed explanations

# of Terms 20 30 40 50 60
Ratio 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6

MLLS 0.7994 0.8161 0.8492 0.8434 0.8500 0.8107 0.8211 0.8534 0.8490 0.8529
CCA+Ridge 0.7904 0.8119 0.8450 0.8369 0.8420 0.8101 0.8177 0.8464 0.8432 0.8448
CCA+SVM 0.7826 0.7822 0.8178 0.8064 0.8071 0.7961 0.7800 0.8216 0.8119 0.8106
SVM 0.7808 0.7897 0.8230 0.8183 0.8234 0.7899 0.7935 0.8284 0.8239 0.8246
ASOSVM 0.7733 0.7881 0.8175 0.8146 0.8210 0.7760 0.8018 0.8347 0.8261 0.8245

MLLS 0.4713 0.4380 0.4550 0.4256 0.4119 0.4818 0.4362 0.4657 0.4240 0.4122
CCA+Ridge 0.4637 0.4320 0.4412 0.4257 0.4108 0.4782 0.4330 0.4629 0.4279 0.4104
CCA+SVM 0.4612 0.4206 0.4468 0.4058 0.3966 0.4701 0.4106 0.4501 0.4076 0.3898
SVM 0.4522 0.4183 0.4282 0.4000 0.3901 0.4613 0.4216 0.4356 0.4070 0.3854
ASOSVM 0.4579 0.4206 0.4181 0.3859 0.3860 0.4526 0.4289 0.4405 0.4058 0.3812

MLLS 0.5006 0.4712 0.4721 0.4515 0.4430 0.5089 0.4682 0.4788 0.4464 0.4437
CCA+Ridge 0.4947 0.4586 0.4546 0.4541 0.4461 0.5066 0.4595 0.4765 0.4524 0.4440
CCA+SVM 0.4938 0.4533 0.4613 0.4257 0.4271 0.4992 0.4415 0.4616 0.4250 0.4135
SVM 0.4709 0.4340 0.4366 0.4125 0.3997 0.4801 0.4420 0.4378 0.4122 0.3957
ASOSVM 0.4648 0.4299 0.4347 0.4064 0.4115 0.4598 0.4470 0.4492 0.4219 0.4082

Table IX.
The p-values obtained by performing wilcoxon signed rank test to assess the statistical

significance of performance differences between MLLS and three other methods in terms of AUC
(top section), macro F1 (middle section), and micro F1 (bottom section) on the image annotation

datasets. A p-value of smaller than 0.05 is usually considered as indication of statistically
significant difference

# of Terms 20 30 40 50 60
Ratio 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4

MLLS v.s. CCA+Ridge 1.15e-1 1.10e-1 1.73e-6 2.60e-6 1.92e-6 3.16e-2 1.73e-6 1.73e-6 1.73e-6 1.73e-6
MLLS v.s. CCA+SVM 1.73e-6 1.73e-6 1.73e-6 1.73e-6 1.73e-6 1.73e-6 1.73e-6 1.73e-6 1.73e-6 1.73e-6
MLLS v.s. SVM 1.73e-6 1.73e-6 3.51e-6 1.73e-6 1.73e-6 1.73e-6 1.73e-6 1.73e-6 1.73e-6 1.73e-6

MLLS v.s. CCA+Ridge 8.61e-1 3.38e-1 1.92e-6 9.84e-3 6.26e-2 3.31e-4 1.02e-5 2.87e-6 5.70e-4 2.35e-6
MLLS v.s. CCA+SVM 4.86e-5 3.58e-4 2.10e-3 2.12e-6 1.63e-5 4.44e-5 1.73e-6 1.73e-6 6.28e-1 1.73e-6
MLLS v.s. SVM 5.75e-6 5.21e-6 3.72e-5 2.41e-3 1.73e-6 3.31e-4 1.73e-6 1.73e-6 1.03e-3 1.73e-6

MLLS v.s. CCA+Ridge 9.42e-1 3.18e-1 1.73e-6 2.41e-3 1.75e-2 7.69e-6 3.18e-6 1.73e-6 5.21e-6 1.73e-6
MLLS v.s. CCA+SVM 4.44e-5 1.05e-4 3.87e-2 5.75e-6 2.12e-6 1.02e-5 1.73e-6 1.73e-6 2.60e-6 1.73e-6
MLLS v.s. SVM 1.73e-6 1.73e-6 1.47e-2 1.92e-6 1.73e-6 1.73e-6 1.73e-6 1.73e-6 1.73e-6 1.73e-6

than 0.05 is usually considered as indication of performance difference. We can
observe that most of the performance differences are statistically significant.

6.4 Discussion

It follows from the discussion in Section 4 that ridge regression, CCA, and
ASOSVM with the same input data are all special cases of the proposed
formulation. On both the web page categorization and the gene expression
pattern image annotation tasks, the proposed formulations achieve the high-
est performance in most cases. An interesting observation is that the runner-
up methods on these two tasks, which are ASOSVM and CCA+Ridge, respec-
tively, tend to be different. This may be attributable to the fact that the
correlation information among different labels may be different for different
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Table X.
The p-values obtained by performing wilcoxon signed rank test to assess the statistical

significance of performance differences between MLLS and three other methods in terms of AUC
(top section), macro F1 (middle section), and micro F1 (bottom section) on the image annotation

datasets. A p-value of smaller than 0.05 is usually considered as indication of statistically
significant difference

# of Terms 20 30 40 50 60
Ratio 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6

MLLS v.s. CCA+Ridge 1.73e-6 5.57e-1 1.73e-6 1.73e-6 2.35e-6 1.73e-6 1.73e-6 1.73e-6 1.73e-6 1.73e-6
MLLS v.s. CCA+SVM 1.73e-6 1.73e-6 1.73e-6 1.73e-6 1.73e-6 1.73e-6 1.73e-6 1.73e-6 1.73e-6 1.73e-6
MLLS v.s. SVM 1.73e-6 1.73e-6 1.73e-6 1.73e-6 1.73e-6 1.73e-6 1.73e-6 1.73e-6 1.73e-6 1.73e-6

MLLS v.s. CCA+Ridge 3.60e-3 1.25e-1 2.58e-3 4.94e-2 4.28e-6 1.20e-1 6.43e-1 2.70e-2 5.85e-1 1.65e-1
MLLS v.s. CCA+SVM 8.18e-5 4.44e-5 1.73e-6 1.73e-6 3.88e-4 1.73e-6 1.73e-6 2.35e-6 1.92e-6 1.73e-6
MLLS v.s. SVM 4.28e-6 1.92e-6 1.73e-6 1.92e-6 1.73e-6 1.73e-6 1.73e-6 2.35e-6 1.73e-6 1.73e-6

MLLS v.s. CCA+Ridge 3.85e-3 1.52e-1 3.18e-6 2.37e-5 1.73e-6 1.77e-1 2.06e-2 3.88e-4 3.37e-3 7.65e-1
MLLS v.s. CCA+SVM 2.83e-4 1.63e-5 1.92e-6 1.92e-6 6.98e-6 1.73e-6 1.73e-6 1.73e-6 1.73e-6 1.73e-6
MLLS v.s. SVM 1.73e-6 1.73e-6 1.73e-6 1.73e-6 1.73e-6 1.73e-6 1.73e-6 1.73e-6 1.73e-6 1.73e-6

tasks, and hence it should be exploited in different ways. One appealing fea-
ture of the proposed formulation is that it is a general framework that in-
cludes several well-known algorithms as special cases. By adjusting the two
regularization parameters, the proposed formulation can be adapted to cap-
ture the correlation information among labels in various tasks. This effec-
tively avoids the needs to apply multiple algorithms, such as ASOSVM and
CCA+Ridge, to a given task and choose the one that results in the highest
performance.

The experimental results in this article show that the proposed shared-
subspace formulation outperforms existing methods in most cases. This may
be due to the fact that the proposed formulation is a general framework that
includes several traditional algorithms, such as LDA, CCA, and PLS, as spe-
cial cases. Hence, if the two regularization parameters are tuned properly, the
proposed formulation is expected to outperform traditional methods, since it
reduces to these methods when the regularization parameters are set to par-
ticular values. On the other hand, there are a few cases in the experiments
in which the proposed formulation yields low performance. Recall that the
proposed formulation assumes that a common subspace is shared among all
labels, which may be too restrictive in some cases, and hence leads to low
performance. Similar phenomenon has been observed in the contexts of multi-
task learning [Argyriou et al. 2008; Jacob et al. 2009] and multivariate re-
gression [Kim et al. 2008]. A commonly used technique to overcome this prob-
lem is to cluster the tasks into multiple clusters and impose local constraints
onto tasks in the same cluster. We will extend the proposed formulation to
clustered shared-subspace formulation and investigate its performance in the
future.

7. CONCLUSIONS AND FUTURE WORK

We present a framework for extracting shared subspace in multi-label classi-
fication in this paper. In this framework, a subspace is assumed to be shared
among multiple labels, and a linear transformation is computed to discover this
subspace. We show that when the least squares loss is used in classification,
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the optimal solution to the proposed formulation can be computed by solving
a generalized eigenvalue problem. For high-dimensional data, direct compu-
tation is computationally expensive, and we develop an efficient algorithm
for this case. We show that the proposed formulation is a general framework
that includes several well-known formulations as special cases. Moreover, the
proposed framework can be extended to the kernel-induced feature space. Ex-
perimental results on multi-topic Web page categorization and gene expression
pattern image annotation tasks show that the proposed formulations outper-
form competing methods in most cases.

Our results show that applying regularization on both parts of the predictor
can potentially improve performance. We have attempted to compare the pro-
posed formulation with an extension of the ASO algorithm in which both parts
of the predictor are regularized. However, this extension of the ASO algorithm
is computationally demanding when both regularization parameters are tuned
using double cross-validation. We will explore ways to improve the efficiency
of this algorithm in the future. The data matrices in many applications such
as the one in web page categorization task are sparse. Hence, techniques for
computing the SVD of sparse matrices as proposed in Larsen [2000] can be
employed to expedite the computation. We plan to apply such techniques in
our algorithm in the future. The kernel matrix used in gene expression pattern
image annotation is integrated from multiple candidate kernel matrices with
a uniform weight. When some of the candidate kernel matrices are noisy, this
simple approach for kernel integration may not yield improved performance.
We plan to cast the proposed feature space formulation into the multiple kernel
learning framework so that the weights for combining kernels can be adapted
automatically.
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