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Our Motivation

Multi-task learning aims to improve the generalization
performance by learning from multiple related tasks.

Applied in the areas of machine learning, data mining,
compute vision, and bioinformatics.

Ando and Zhang (JMLR 05) propose the alternating structure
optimization (ASO) algorithm to learn the predictive structure
from multiple tasks.

The ASO formulation is non-convex and its algorithm is not
guaranteed to find a global optimum.
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Main Contribution

Propose an improved ASO formulation (iASO) using a novel
regularizer.

Convert iASO into a (relaxed) convex formulation, which is
not scalable to large data sets.

Propose a convex alternating structure optimization (cASO)
algorithm to efficiently find the globally optimal solution for
the convex relaxation.

Present a theoretical condition under which cASO finds a
globally optimal solution to iASO.
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Problem Setting

Given m supervised learning tasks, where the `-th tasks is
associated with training data

{(x`
1, y

`
1), · · · , (x`

n`
, y `

n`
)} ⊂ Rd × {−1, 1}, ` ∈ Nm,

and a linear predictor denoted as

f`(x) = uT
` x , u` ∈ Rd .

Assume that the m learning tasks are related using some low
dimensional feature space.
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iASO Formulation I

We consider the linear predictor in the form of (Ando and
Zhang, 2005)

f`(x) = uT
` x = wT

` x + vT
` Θx , ΘΘT = I . (1)

Θ: the shared structure parameter
u`, w`, v`: the feature space weight vectors
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iASO Formulation II

The proposed improved ASO formulation (iASO) is given by:

(F0) min
{u`,v`},ΘΘT=I

∑m
`=1

(
1
n`

∑n`
i=1 L(uT

` x`
i , y

`
i ) + g`(u`, v`,Θ)

)
,

where L is the loss function, and g`(u`, v`,Θ) is defined as:

g`(u`, v`,Θ) = α‖u` −ΘTv`‖2 + β‖u`‖2. (2)

‖u` −ΘTv`‖2: control the task relatedness
‖u`‖2: control the complexity of the predictor functions

If α = 0, iASO reduces to m independent SVMs. If β = 0,
iASO reduces to the ASO formulation.



Introduction Multi-Task Learning Framework Convex MTL Formulation Convex ASO Algorithm Experiments

Equivalent Reformulation I

The objective function in iASO:∑m
`=1

(
1
n`

∑n`
i=1 L(uT

` x`
i , y

`
i ) + α‖u` −ΘTv`‖2 + β‖u`‖2

)
. (3)

Reformulation 1: The optimal {v`} to iASO is given by
v` = Θu`. By substitution, Eq. (3) can be written as∑m

`=1

(
1
n`

∑n`
i=1 L(uT

` x`
i , y

`
i ) + αu>`

(
(1 + β

α)I −Θ>Θ
)

u`

)
.(4)
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Equivalent Reformulation I

Reformulation 2: Let η = β/α. Following the equality

(1 + η)I −ΘTΘ = η(1 + η)
(
ηI + ΘTΘ

)−1
, (5)

Eq. (4) can be further rewritten as∑m
`=1

(
1
n`

∑n`
i=1 L(uT

` x`
i , y

`
i ) + αη(1 + η)u>`

(
ηI + ΘTΘ

)−1
u`

)
.(6)
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Equivalent Reformulation III

Reformulation 3: Let U = [u1, · · · , um]. By substituting the
matrices product Θ>Θ using a matrix M, iASO can be
reformulated as

(F1) min
U,M

∑m
`=1

(
1
n`

∑n`
i=1 L(uT

` x`
i , y

`
i )
)

+ G1(U,M)

subject to M ∈
{
Me | Me = ΘTΘ, ΘΘT = I , Θ ∈ Rh×d

}
,

where G1(U,M) is defined as

G1(U,M) = α η (1 + η) tr
(
UT (ηI + M)−1 U

)
. (7)
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Convex Relaxation I

The convex hull of the set

Me =
{

Me | Me = ΘTΘ, ΘΘT = I , Θ ∈ Rh×d
}

(8)

can be precisely expressed as the convex set

Mc =
{

Mc | tr(Mc) = h, Mc � I , Mc ∈ Sd
+

}
. (9)

Since Mc consists of all convex combinations of the elements
in Me , Mc is the smallest convex set that contains Me .
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Convex Relaxation II

We convert the non-convex problem F1 into a convex
formulation as

(F2) min
U,M

m∑
`=1

(
1

n`

n∑̀
i=1

L(uT
` x`

i , y
`
i )

)
+ G2(U,M)

subject to tr(M) = h, M � I , M ∈ Sd
+, (10)

where

G2(U,M) = α η (1 + η) tr
(
UT (ηI + M)−1 U

)
. (11)
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SDP Formulation

Following the Schur complement Lemma, we rewrite F2 as

(F3) min
U,M,{t`}

m∑
`=1

(
1

n`

n∑̀
i=1

L(uT
` x`

i , y
`
i )

)
+ αη(1 + η)

m∑
`=1

t`

subject to

(
ηI + M u`

uT
` t`

)
� 0, ∀` ∈ Nm,

tr(M) = h, M � I , M ∈ Sd
+. (12)

If L is the hinge loss function, F3 is a SDP, which is not
scalable to high-dimensional data.
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Convex ASO Algorithm I

We propose a convex alternating structure optimization
(cASO) algorithm to efficiently solve F2, that is, recycling
between the following two steps:

Step 1: Given M, optimize U

Step 2: Given U, optimize M

We can show that cASO finds the globally optimal solution to
F2 (Argyriou et al., 2007; Argyriou et al., 2008).
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Convex ASO Algorithm II

Given M, U can optimized via the problem:

min
U

m∑
`=1

(
1

n`

n∑̀
i=1

L(uT
` x`

i , y
`
i ) + ĝ(u`)

)
, (13)

where ĝ(u`) is given by

ĝ(u`) = α η (1 + η) tr
(
uT

` (ηI + M)−1 u`

)
. (14)

If L is the hinge loss, the problem in Eq. (13) decouples into
m independent quadratic programs (QP).



Introduction Multi-Task Learning Framework Convex MTL Formulation Convex ASO Algorithm Experiments

Convex ASO Algorithm III

Given U, M can be optimized via the problem:

min
M

tr
(
UT (ηI + M)−1 U

)
subject to tr(M) = h,M � I ,M ∈ Sd

+. (15)

Although Eq. (15) can be recast into an SDP, we propose an
efficient approach to find its optimal solution.
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Efficient Computation of M

Given U ∈ Rd×m, the optimal M to Eq. (15) has an analytic
form as

M = P1Γ
∗P>1 , Γ∗ = diag

(
γ∗1 , · · · , γ∗q

)
. (16)

Step 1: Compute P1 via the SVD of U = P1ΣPT
2 , where

P1 ∈ Rd×d ,Σ = diag(σ1, · · · , σq) ∈ Rd×m, rank(U) = q.

Step 2: Compute {γ∗i }
q
i=1 via solving:

min
{γi}q

i=1

∑q
i=1

σ2
i

η+γi

subject to
∑q

i=1 γi = h, 0 ≤ γi ≤ 1, ∀i ∈ Nq. (17)
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Computation of an Optimal Solution to iASO

We show under a theoretical condition a globally optimal
solution to iASO (F1) can be obtained from cASO (F2).

Let (U∗,M∗) be the optimal solution to F2.

Let P1 ∈ Rd×d and {σi}q
i=1 be the left singular vectors and the

non-zero singular values of U∗, respectively.

If σh/σh+1 ≥ 1 + 1/η, the optimal solution to F1 is given by
(U∗,Θ∗), where Θ∗ consist of the first h column of P1.
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Experimental Study I

Table: Performance comparison of competing algorithms.

Data Set Recreation Science Social Society
(n, d, m) (12797, 25095, 18) (6345, 24002, 22) (11914, 32492, 21) (14507, 29189, 21)

SVM 43.01± 1.44 41.80± 1.45 35.87± 0.79 30.68± 0.94
Macro ASO 43.63± 1.29 39.26± 0.82 35.29± 0.67 29.42± 0.30

F1 cASO 47.12± 0.73 45.46± 0.50 39.30± 1.28 34.84± 1.05
cMTFL 46.13± 0.58 42.52± 0.59 38.94± 1.88 33.79± 1.43
SVM 49.15± 2.32 49.27± 4.64 63.05± 2.45 40.07± 3.42

Micro ASO 50.68± 0.18 49.05± 0.57 62.77± 3.59 46.13± 2.33
F1 cASO 53.34± 0.90 53.32± 0.45 66.04± 0.62 49.27± 0.55

cMTFL 52.52± 0.92 50.60± 0.76 65.60± 0.63 46.46± 0.87

Key Observation:

cASO outperforms or perform competitively with other competing algorithms.
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Experimental Study II

Key Observation:

A small η leads to lower F1, while η ≈ 1 leads to the highest F1.

cASO requires more computation time for convergence using a small η, while
less computation time is required for a large η.
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Experimental Study III

Table: Comparison of the optimal objective values of F0 and F2 with
different choices of η.

η 1000 100 10 1 0.1 0.01 0.001
1 + 1/η 1.001 1.01 1.1 2 11 101 1001
σh/σh+1 1.23 1.25 1.34 1.75 3.07 13.79 89.49
OBJF0 52.78 52.65 51.37 40.73 22.15 5.95 0.69
OBJF2 52.78 52.65 51.37 40.71 20.73 4.11 0.41

Key Observation:

We can observe that when η ∈ {1000, 100, 10}, the condition
σh/σh+1 > 1 + 1/η is satisfied and hence OBJF0

= OBJF2
; otherwise, we

observe OBJF0
> OBJF2

.
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Conclusion and Future Work

Present iASO for learning a shared feature representation
from multiple related tasks.

Convert iASO into a relaxed convex formulation, and then
develop the cASO algorithm to compute its globally optimal
solution efficiently.

Present a theoretical condition, under which cASO can find a
globally optimal solution to iASO.

Plan to compare the iASO formulation with the multi-task
learning formulation using the trace-norm regularization.
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